# Organic Pollutants in Australian Biosolids

Biosolids Workshop – RMIT University 6<sup>th</sup> December 2012

**Dr Bradley Clarke** 

Collaborators: Nichola Porter, Stephen Smith, Robert Symons & Judy Blackbeard

### Public Health Risks From Organic Pollutants



## Reproduction, Impaired Immune System & Neurological Damage

Accepted 14 February 2011

Keywords:

*p-p*′ DDE Sperm count

Thyroid hormones

PBDE

PCB

Available online 18 February 2011



In Vitro exposure reproductive health problems



*Methods:* Fifty-two men were recruited in a fertility clinic. Semen counts were done for each participant. Serum thyroid hormone and PBDE, PCB and *p*-*p*' DDE levels were measured. Sociodemographic questionnaire were administered to each participant and all medical data were obtained from medical record.

*Results:* Semen mobility was negatively related to BDE-47, BDE-100 and  $\Sigma$ BDE. No relations were observed with other semen parameters. Thyroxin levels were negatively associated to serum BDE-47, BDE-99,  $\Sigma$ BDE and p-p' DDE and positively related to  $\Sigma$ PCB. No relations were observed between T3, TSH and any of the chemicals measured.

Conclusion: These findings increased the evidence that PBDE may interfere with semen quality and thyroid status in general population.

© 2011 Elsevier Inc. All rights reserved.

Are We THREATENING per Fertility, Intelligence and Serviced ? - A Scientific Detective Story

iron. Health Persp. 1998, 106, 347-353

# • • • Australian Organic Regulations

| Australia<br>National | NSW | Vic | SA | Qld | Tas | WA | NZ | EU | USA |
|-----------------------|-----|-----|----|-----|-----|----|----|----|-----|
| C1                    | A   | C1  | A  | A   | A   | C1 | а  |    |     |
|                       | В   |     | В  | В   |     |    |    |    |     |
| C2                    | С   | C2  | С  | С   | В   | C2 | b  | 1  | A   |
|                       | D   |     |    | D   |     |    |    | 2  | В   |
|                       | E   | C3  |    | E   | С   | C3 |    |    |     |

- Each state has slightly different guidelines
- Inevitable confusion

# Australian Organic Regulations (mg/kg)

|            | Minimum  |      |      |      |              |      | Maximum |     |     |              |      |
|------------|----------|------|------|------|--------------|------|---------|-----|-----|--------------|------|
| Compound   | Nat.     | Vic  | WA   | SA   | NSW &<br>Qld | Nat. | Vic     | WA  | SA  | NSW &<br>Qld | NEPC |
| ΣDDT       | 0.5      | 0.5  | 0.5  | -    | 0.5          | 1    | 1       | 1   | -   | 1            | 200  |
| Aldrin     | -        | -    | 0.02 | -    | 0.02         | -    | -       | 0.5 | -   | 1            | 10   |
| Chlordane  | -        | -    | 0.02 | 0.02 | 0.02         | -    | -       | 0.5 | 0.5 | 1            | 50   |
| Dieldrin   | _        | -    | 0.02 | 0.02 | 0.02         | -    | -       | 0.5 | 0.5 | 1            | 10   |
| Heptachlor | -        | -    | 0.02 | -    | 0.02         | -    |         | 0.5 | -   | 1            | 10   |
| НСВ        | -        | -    | 0.02 | -    | 0.02         | -    |         | 0.5 | -   | 1            |      |
| Lindane    | -        | -    | -    | -    | 0.02         | -    |         | -   | -   | 1            |      |
| ∑OCPs      | 0.05     | 0.05 | -    | -    | -            | 0.5  | 1       | -   | -   | -            |      |
| PCBs       | 0.05-0.3 | 0.2  | 0.3  | -    | 0.3          | 0.5  | 1       | 0.5 | -   | 1            | 10   |

Category A – 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry): this category includes *children's day-care centers, kindergartens, preschools and primary schools* 

# • • International Organic Guidelines

|                               | AOX<br>mg kg <sup>-1</sup> | DEHP<br>mg kg <sup>-1</sup> | LAS<br>mg kg <sup>-1</sup> | NP/NPE<br>mg kg <sup>-1</sup> | OCPs<br>mg kg <sup>-1</sup> | PAH<br>mg kg <sup>-1</sup> | PCBs<br>mg kg <sup>-1</sup> | PCDD/Fs<br>ng WHO <sub>05</sub> TEQ kg <sup>-1</sup> | Other<br>mg kg <sup>-1</sup>                  |
|-------------------------------|----------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------------------------------|-----------------------------------------------|
| Austria                       | 500                        |                             |                            |                               |                             | 6                          | 0.2 -1                      | 50 - 100                                             |                                               |
| Australia                     |                            |                             |                            |                               | ₩DDT                        |                            | 0.5-1                       | 50                                                   |                                               |
|                               |                            |                             |                            |                               | 1<br>OCPs 1                 |                            |                             |                                                      |                                               |
| Denmark                       |                            | 50                          | 1300                       | 10                            |                             | 3                          |                             |                                                      |                                               |
| EC (2000)a                    | 500                        | 100                         | 2600                       | 50                            |                             | 6                          | 0.8                         | 100                                                  |                                               |
| EC (2003)a                    |                            |                             | 5000                       | 450                           |                             | 6                          | 0.8                         | 100                                                  |                                               |
| France                        |                            |                             |                            |                               |                             | 1.5 - 4                    | 0.8                         |                                                      |                                               |
| Germany<br>(2002)             | 500                        |                             |                            |                               |                             | 1                          | 0.1                         | 100                                                  |                                               |
| Germany<br>Proposed<br>(2007) | 400                        |                             |                            |                               |                             | 1                          | 0.1                         | 30                                                   | MBT+OBT: 0.6<br>Tonalid: 15<br>Galaxolide: 10 |
| USA                           |                            |                             |                            |                               |                             |                            |                             | 300                                                  |                                               |

# Biosolids Regulations in Australia

How were they derived?

- Sound science
- Risk assessment
- Protection of public health and the environment
- Best guess
- Achievable targets
- Detection limits









# Are biosolids contaminant limits for OCPs/PCBs necessary for the protection of public health & the environment?

- 1. Empirical Data
- 2. Risk Assessment
- 3. Regulatory Limits

# • • OCP/PCB Data 2004 - 2006

|         | Overall  | 2004     | 2005     | 2006     |
|---------|----------|----------|----------|----------|
| Overall | 829 (58) | 221 (17) | 335 (33) | 273 (36) |
| NSW     | 539 (22) | 169 (8)  | 181 (11) | 189 (14) |
| Qld     | 191 (24) | 11 (3)   | 151 (14) | 65 (13)  |
| Tas     | 6 (2)    | 0 (0)    | 0 (0)    | 6 (2)    |
| Vic     | 48 (7)   | 10 (3)   | 28 (5)   | 10 (4)   |
| WA      | 45 (3)   | 31(3)    | 11 (3)   | 3 (3)    |

No of biosolids; ( ) = No of WWTP

CLARKE et al (2010) Environment International, 36, 323-329.

# • • OCPS/PCBs Summary Statistics

| Variable   | Det | <dl< th=""><th>X</th><th>Mean<br/>mg kg<sup>-1</sup></th><th>StDev<br/>mg kg<sup>-1</sup></th><th>Min<br/>mg kg<sup>-1</sup></th><th>Max<br/>mg kg<sup>-1</sup></th></dl<> | X  | Mean<br>mg kg <sup>-1</sup> | StDev<br>mg kg <sup>-1</sup> | Min<br>mg kg <sup>-1</sup> | Max<br>mg kg <sup>-1</sup> |
|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------|------------------------------|----------------------------|----------------------------|
| Σ DDT      | 112 | 717                                                                                                                                                                        | 14 | 0.04                        | 0.05                         | 0.01                       | 0.27                       |
| Aldrin     | 3   | 826                                                                                                                                                                        | 0  | 0.03                        | 0.03                         | 0.01                       | 0.07                       |
| Chlordane  | 227 | 602                                                                                                                                                                        | 27 | 0.03                        | 0.03                         | 0.01                       | 0.30                       |
| Dieldrin   | 567 | 262                                                                                                                                                                        | 68 | 0.05                        | 0.06                         | 0.01                       | 0.77                       |
| Heptachlor | 16  | 813                                                                                                                                                                        | 2  | 0.05                        | 0.04                         | 0.02                       | 0.17                       |
| НСВ        | 22  | 807                                                                                                                                                                        | 3  | 0.04                        | 0.06                         | 0.01                       | 0.30                       |
| Lindane    | 0   | 829                                                                                                                                                                        | 0  | *                           | *                            | *                          | *                          |
| PCBs       | 10  | 819                                                                                                                                                                        | 1  | 0.26                        | 0.14                         | 0.02                       | 0.41                       |

#### Group 1

Commonly detected >10%; dieldrin 68%, chlordane 27%, DDE 13%

#### <u>Group 2</u>

Infrequently detected < 5%; HCB 3%, heptachlor 2%, PCBs 1%

#### <u>Group 3</u>

Rarely detected <1%; DDT 0.3%, DDD 0.5%, aldrin 0.4%, lindane 0%

CLARKE et al (2010) Environment International, 36, 323-329

# • • OCPs/PCBs 2004 - 2006

**C2** Unsuitable for Beneficial Reuse



CLARKE et al (2010) Environment International, 36, 323-329

#### **OCPs/PCBs 2004 - 2006**



**C2** Unsuitable for Beneficial Reuse

**C1** Restricted Use

CLARKE et al (2010) Environment International, 36, 323-329

# • Time Series Data 1995 – 2006

| Cmps       | Det  | <dl< th=""><th>X</th><th>Mean<br/>mg kg<sup>-1</sup></th><th>StDev<br/>mg kg<sup>-1</sup></th><th>Min<br/>mg kg<sup>-1</sup></th><th>Max<br/>mg kg<sup>-1</sup></th></dl<> | X     | Mean<br>mg kg <sup>-1</sup> | StDev<br>mg kg <sup>-1</sup> | Min<br>mg kg <sup>-1</sup> | Max<br>mg kg <sup>-1</sup> |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|------------------------------|----------------------------|----------------------------|
| DDT        | 29   | 2237                                                                                                                                                                       | 1.30  | 0.05                        | 0.05                         | 0.01                       | 0.17                       |
| DDD        | 89   | 2177                                                                                                                                                                       | 3.93  | 0.06                        | 0.15                         | 0.01                       | 1.04                       |
| DDE        | 129  | 2137                                                                                                                                                                       | 5.69  | 0.02                        | 0.02                         | 0.01                       | 0.13                       |
| ΣDDT       | 174  | 2092                                                                                                                                                                       | 7.68  | 0.05                        | 0.11                         | 0.01                       | 1.04                       |
| Aldrin     | 6    | 2260                                                                                                                                                                       | 0.26  | 0.10                        | 0.16                         | 0.01                       | 0.41                       |
| Dieldrin   | 1554 | 712                                                                                                                                                                        | 68.58 | 0.10                        | 0.08                         | 0.01                       | 0.49                       |
| Chlordane  | 1016 | 1250                                                                                                                                                                       | 44.84 | 0.11                        | 0.10                         | 0.01                       | 0.73                       |
| Heptachlor | 9    | 2257                                                                                                                                                                       | 0.40  | 0.13                        | 0.08                         | 0.04                       | 0.25                       |
| НСВ        | 175  | 2091                                                                                                                                                                       | 7.72  | 0.07                        | 0.09                         | 0.01                       | 0.48                       |
| Lindane    | 0    | 2266                                                                                                                                                                       | 0.00  | *                           | *                            | *                          | *                          |
| PCBs       | 126  | 2140                                                                                                                                                                       | 5.56  | 0.30                        | 0.20                         | 0.06                       | 1.40                       |
|            |      |                                                                                                                                                                            |       |                             |                              |                            |                            |

<u>Group 1</u> Commonly detected dieldrin 69%, chlordane 45%

<u>Group 2&3</u> All other compounds detected in less than 10% samples

CLARKE et al (2010) Environment International, 36, 323-329





CLARKE et al (2010) Environment International, 36, 323-329

#### PCBs Time Series 1995 - 2006



CLARKE et al (2010 Environment International, 36, 323-329.

#### Time Series Analysis 1995 - 2006





OCPs and PCBs can be removed from biosolids regulations in Australia because:

- 1. They are infrequently detected
- 2. Almost never above highest contaminant limit
- 3. The contaminant limit is not based upon protection of public health/environment
- 4. Is a poor use of money (>\$200 per sample)



# 'Emerging' Organic Pollutants

#### Thousands of Potential Contaminants





# • • • Assessment Matrix

|                    | Persistence<br>2 – Yes<br>1 - Uncertain<br>0 – No | Food chain<br>2 – Possible<br>1 - Uncertain<br>0 - No | Ecological | Soil Ecotoxicity<br>2 - Yes<br>1 - Uncertain<br>0 - No | <b>Research</b><br>3 - Lack of data<br>2 - Few studies<br>1 - Consistent<br>0 - Many & similar | Score<br>( /11) |
|--------------------|---------------------------------------------------|-------------------------------------------------------|------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------|
| Antibiotics        | 0                                                 | 2                                                     | 0          | 1                                                      | 2                                                                                              | 5               |
| Benzothiazoles     | 1                                                 | 1                                                     | 0          | 1                                                      | 3                                                                                              | 6               |
| <b>Bisphenol A</b> | 0                                                 | 0                                                     | 0          | 0                                                      | 2                                                                                              | 2               |
| Organotins         | 1                                                 | 1                                                     | 2          | 1                                                      | 2                                                                                              | 7               |
| Phthalates         | 0                                                 | 0                                                     | 0          | 0                                                      | 1                                                                                              | 1               |
| PBDEs              | 2                                                 | 2                                                     | 2          | 1                                                      | 0                                                                                              | 7               |
| PCAs               | 2                                                 | 2                                                     | 1          | 1                                                      | 3                                                                                              | 9               |
| PCNs               | 2                                                 | 2                                                     | 1          | 1                                                      | 3                                                                                              | 9               |
| Siloxanes          | 0                                                 | 0                                                     | 0          | 0                                                      | 1                                                                                              | 1               |
| PFCs               | 2                                                 | 2                                                     | 2          | 1                                                      | 3                                                                                              | 10              |
| QACs               | 0                                                 | 0                                                     | 0          | 0                                                      | 2                                                                                              | 2               |
| Steroids           | 0                                                 | 0                                                     | 0          | 0                                                      | 2                                                                                              | 2               |
| Synthetic Musks    | 1                                                 | 0                                                     | 1          | 0                                                      | 1                                                                                              | 3               |
| Triclosan          | 1                                                 | 0                                                     | 2          | 2                                                      | 2                                                                                              | 7               |
| Triclocarban       | 1                                                 | 0                                                     | 2          | 2                                                      | 2                                                                                              | 7               |

# Polybrominated diphenyl ethers (PBDEs)

Used as fire retardantElectronics

Recently included as UN POPEnvironmental contaminant



# More classes – BFRs, PFCs & PCAs

Cougoi et al / Environment Inte Occurrence of perfluorinated compounds (PFGs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water on Land and Content weinesstephan for ther Levels of Chiorinated Paraffins in Water he Universität München lichaei Witherman Sabine Berghan PF Hermann H. Dieter<sup>c,\*</sup> HCDBCO Hygiene, Social and Environmental Medicine, Run-Thyperofessor, Harun Parlar on the occasion of his 65th birthday espinalia State Agency for Nature, Brithment and Consumer Protection (TANYV-NRW), Recklinghausen, Germany ment Agency (Umweltbundownen) of Grynnik Genetion (TANYV-NRW), Recklinghausen, Germany endeu Berling Germany, Constant Genetion (TANYV-NRW), Recklinghausen, Sollwarts, Welther and State Parlanet (State Refue Berling Germany, Sollwarts, State (State) ( North Rhi Federal Envi 844 Dessa Rlau Rerlin Cermany lvzed for chlorinated paraffins (CPs). CPs were not detected in river water samples negative ion mass spectrometry (GC-ECNI-MS) (LOQ = 100 ng/L). However, middle cl influents while short chain chlorinated paraffins (SCCPs) were detected only in 2 of Loug-chain perfluorinated permicals in digested sources sludges circ Switzerdand And Fease Correcke ", Walter Ciger ", Alfredo Calder " Br Et Keywords: Chlorinated parafilins: Defermination: Occurrence: Polychlorinated malkanes; Ky Laboratory of Pollution Processes and Environmentator Science and Engineering. Nankai University. Tomin China wiss Federal Laboratories for Maternals Testing and Research, CH-8600 Dubendoff, Switzerland Br Br wiss rederal Laboratories for Materials testing and research, Cr-Bobb Dubendor, Switzerland ger Research Consulting, CH-8049 Aurich, Switzerlawded: February 5, 2010; revised: March 16, 2010; accepted: March 21, 2010 Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dibendorf, Switzerland trations of long-chain PFCs in dige statistical science and science and the Trends PERFI JORINATED PHOSPHONIC ACIDS IN CANADIAN SURFACE WATERS AND ASTEWATER TREATMENT PLANT EFFLUENT: DISCOVERY OF A NEW CLASS OF ccurrence, Tate and anal D'EOR, PAPRICK W CROZIER, VASILE I. EUROUI, † ERIC J. REINER, ‡ E. LAURENCE LIBELO, § rvice Branch, Ontario Ministry of the Environment, 125 Resource Road, Egyppio, Ontario M9P<sup>3</sup>V6, Canada ental Protection Regress, Office of Pollution Prevention and Toxics, Mail Code 7406C, 1200 Pennsylvania Avenue. environmen -сн=сн Fig. 1. Chemical structures of most important NBFRs.

Novel Brominated Fire Retardants

Perfluorochemicals (PFCs): Short Chain, Long Chain, phosphonic acid

> Polychlorinated alkanes (mixed bromo/chloro alkanes)

Do organic pollutants in biosolids pose a risk to public health and the environment?



# Human Health Risk Assessment

# Hazard Identification + Dose-Response Image: Construction + Risk Characterization

## MAXIMUM RESIDUE LIMITS (MRLs)

- Equating TDI with typical quantities of ingested material (US EPA 1997)
- 200 g plant material
- 300 mL milk that is 4% fat
- 50 g animal fat ingested daily

# • • Exposure Pathways



## • • Pathway 3 - *Grazing Animal*



# Percentage Exposure

# < 5% for chronic dose exposure & worst-case scenarios

| Cmps.         | P1 – Direct Exposure |        | P2 -          | P3 - Grazing Animal |        |        |        | P4 -   |        |
|---------------|----------------------|--------|---------------|---------------------|--------|--------|--------|--------|--------|
|               |                      |        |               | Plant               | Past   | ture   | Gra    | zing   | water  |
|               | Child                | Adult  | Child<br>Pica |                     | Meat   | Milk   | Meat   | Milk   |        |
| Dioxins       | 0.05                 | 0.02   | 4.90          | 1.05                | 1.47   | 2.94   | 0.88   | 1.59   | 2.83   |
| <b>WPBDEs</b> | < 0.01               | < 0.01 | 0.01          | < 0.01              | 0.11   | 0.17   | 0.06   | 0.10   | 0.58   |
| BB-153        | 0.01                 | 0.01   | 1.12          | 0.31                | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| ΣDDT          | < 0.01               | < 0.01 | 0.08          | 0.21                | 0.06   | 0.10   | 0.04   | 0.05   | 0.56   |
| Dieldrin      | 0.02                 | 0.01   | 2.38          | 1.23                | 0.67   | 1.15   | 0.40   | 0.63   | 2.74   |
| Chlordane     | < 0.01               | < 0.01 | 0.20          | 0.71                | 0.04   | 0.05   | 0.02   | 0.03   | 0.40   |
| <b>W</b> PCBs | < 0.01               | < 0.01 | 0.01          | 0.01                | 0.01   | 0.01   | < 0.01 | < 0.01 | 0.19   |

<sup>1</sup> Soil exposure is child of 15 kg and adult of 70 kg ingests 100 mg soil day<sup>-1</sup> and 50 mg soil day<sup>-1</sup> respectively; pica exposure 10 g day<sup>-1</sup> <sup>2</sup> Daily plant consumption by humans assumed to be 200 g

<sup>3</sup> Daily grazing animal consumption is 50 g fat and 300 mL that is 4 % fat; pasture animals assumed to ingest 10 kg fodder grown on sewage sludge amended soil and grazing animals assumed to ingest 10 kg pasture with 500 g associated soil

# • • • Solutions ??

- Deal with the issue
- Review of potential pollutants in catchment
- Source control
- Risk assessment
- Bioanalytical tools

This is long-term problem!!



# Bioanalytical Tools

**Final Report** 

Monitoring Strategies for Chemicals of Emerging Concern (CECs) in Recycled Water

**Recommendations of a Science Advisory Panel** 

Panel Members Paul Anderson, Nancy Denslow, Jörg E. Drewes (*Chair*), Adam Olivieri, Daniel Schlenk, and Shane Snyder



Convened by the
State Water Resources Control Board

June 25, 2010 Sacramento, California

- Recommended strategy by US EPA
- Generalized toxicity
   testing
- Compliment to traditional chemical testing
- Represent a paradigm shift for biosolids managers

### 



|                 | Current |
|-----------------|---------|
| Human promoters | 18,000  |
| Human 3' UTRs   | 12,000  |

- Hypoxia
- p53
- NFkB
- STAT1
- CREB
- Cholesterol biosynthesis
- Glucocorticoid receptor
- PPAR
- Estrogen receptor
- Androgen receptor
- more...

### Pilot Study with Wastewater Treatment:



- Sample name: Site\_Treatment
- Green\_Valley\_E2 spike = Green Valley water sample to which we added 10nM bestradiol (E2) as a control

Conclusions:

- Significant ER activation from Roger Rd site but not Green Valley site
  - Artificially adding 10nM E2 to Green Valley sample activates ER pathway
- Significant and unexpected GR activity from both sites
- GR activity is removed by UV treatment

# Acknowledgements

- Water Quality Research Australia Limited (WQRA)
- Dr. Nichola Porter
- Dr. Judy Blackbeard
- Professor Stephen Smith
- National Measurement Institute (Dr. Robert Symons)
- Water Corporation Western Australia (Nancy Penny)
- Department of Human Services Victoria
- Arkwood Organic Recycling
- All the WWTPs that have participated in this study







# Comments/Questions

# Bradley Clarke bradley.clarke@rmit.edu.au





