Imperial College London

Sewage sludge as source of activated carbon for the removal of endocrine disrupting chemicals in wastewater

G. D. Fowler, S. Pullket, K. M. Smith & N. J. D. Graham Environmental and Water Resources Engineering Department of Civil and Environmental Engineering, Imperial College London SW7 2AZ

Presented at Biosolids Workshop IV: 29th August 2017, RMIT, Australia

Imperial College London Project aims – Sludge valorisation and reuse

Imperial College London EDCs & Bisphenol A – molecular probe of choice

- The World Health Organisation defines EDCs as: "exogenous substances or mixture that alter function(s) of the endocrine system and consequently cause adverse health effects in intact organism, or its progeny or (sub)-populations"
- Solubility (hydrophilicity) of BPA is among the highest compared to the other potent EDC compounds.
- This nature (when compared among the other EDC) also imply that it is by far the most difficult EDC to remove from the aqueous phase.
- The molecular size of BPA is mid-range of EDCs of concern
- Recent research has identified that BPA shows equal potency of action to estradiol, a natural hormone.
- It is one of the highest volume manufactured chemicals, worldwide.
- Its occurrence is widespread:
 - In: wastewater derived from manufacturing applications using BPA
 - In: Landfill leachate

a:Birkett, J.W. and Lester J.N., Endocrine disrupters in wastewater and sludge treatment processes. 2003, London: Lewis publishers. 295 pages. b: Tan, B.L.L., Chemical and biological analyses of selected endocrine disruptors in wastewater treatment plants in South East Queensland, Australia. Australian School of Environmental Studies, Faculty of Environmental Sciences, 2006, Griffith University c: RBA (AR) is relative binding affinity determined by androgen receptor ligand competitive binding assay d: RBA (ER) is relative binding affinity determined by estrogen receptor ligand competitive binding assay

BPA

Compound	Formula	MW (g/mol)	Water solubility (mg/l)	$Log \ K_{\scriptscriptstyle ow}$	RBA (AR) ^c	RBA (ER) ^d
Estrone (E1)	$C_{18}H_{22}O_2$	270.4	12.42 ^a	3.43ª	1.3 x 10 ⁻³	0.44
17β-estradiol (E2)	$\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{O}_{2}$	272.4	12.96 ^a	3.94ª	0.66	1
17α-Ethinylestradiol (EE2)	$C_{24}H_{20}O_2$	296.4	4.83 ^a	4.15 ^a	3.2 x 10 ⁻⁴	0.33
Estriol (E3)	$C_{18}H_{24}O_3$	288.4	13 ^a	2.81ª	4.82 x 10 ⁻³	1.4
Nonylphenol (NP)	$\mathrm{C_{15}H_{24}O}$	220.3	3.9 ^b	5.76 ^b	1.26 x 10 ⁻⁴	1.4 x 10 ⁻³
Octylphenol (OP)	$C_{14}H_{22}O$	206.3	3 ^b	5.50 ^b	1.25 x 10 ⁻⁴	1.24 x 10 ⁻³
Bisphenol A (BPA)	$C_{15}H_{16}O_2$	228.3	120-300ª	3.4ª	3.01 x 10 ⁻⁴	2 x 10 ⁻³

Imperial College London Methodology – Optimised production conditions

Imperial College London Seasonal variation of sludge: Assessed by TGA response

Imperial College London Thermal analysis of DMAD sludge impregnated with K₂CO₃

Imperial College London

Effect of Temperature upon: (i) Char, oil & gas yields; (ii) Surface Area

Imperial College London

Response Surface Methodology Activation optimisation

Imperial College London BPA adsorption capacity

Sludge Based Adsorbent	Langmuir Q _{max} (mg/g)	Sludge Based Adsorbent	Langmuir Q _{max} (mg/g)
$DR + K_2CO_3/900 - Acid Washed$	714	DM + MgCl ₂ /600 – Acid Washed	115
$DR + K_2CO_3/750 - Acid Washed$	625	DM + CaCl ₂ /750 – Acid Washed	105
DR + KOH/750 – Acid Washed	555	DM + KCI/900 – Acid Washed	91
$DM + K_2CO_3/750 - Acid Washed$	455	DR Steam Activated	85
$DM + ZnCI_2/600 - Acid Washed$	333	DM Steam Activated	55
DM + KOH/750 – Acid Washed	303	DM + HNO ₃ /900 – Acid Washed	47
DM + FeCl ₃ /900 – Acid Washed	243	DR Carbonised at 1000 °C	45
$DM + H_3PO_4/900 - Acid Washed$	159	DM Carbonised at 1000 °C	40
Chemviron Filtrasorb	400		

Imperial College London **Conclusions**

- The highest surface area SBA and BPA adsorption was produced by K_2CO_3 chemically activating undigested (DRAW) sludge. Obtained from DR+ $K_2CO_3/900$ -A: BET SA = 1979 m²/g and BPA adsorption capacity (based on Q_{max}) = 714 mg/g.
- Nevertheless, Steam activation of sludge could be attractive depending on the mode of application (as a powdered carbon vs granular material).
- Sewage sludge adsorbents have significant BPA adsorption capability and could provide opportunities to the water industry: further beneficial reuse of sludge; control options for emerging pollutants; sustainable energy generation.

Imperial College London Acknowledgements

•Thank you to....

EU REMOVALS project framework 6: Global Change and Ecosystems priority (contract No: FP6-018525)

Thames Water PLC

Project partners at the Université De Nantes and Technical University de Lódz

Removals

Imperial College London Thank you – Questions?

- Geoff Fowler
- •Environmental and Water Resources Engineering
- Department of Civil and Environmental Engineering
- South Kensington Campus
- London SW7 2AZ
- •Phone: +44 (20) 7594 5973

•Email: g.fowler@ic.ac.uk

