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Abstract

Sewage sludges are residues resulting from the treatment of wastewater released from various sources including homes,
industries, medical facilities, street runoff and businesses. Sewage sludges contain nutrients and organic matter that can provide soil
benefits and are widely used as soil amendments. They also, however, contain contaminants including metals, pathogens, and
organic pollutants. Although current regulations require pathogen reduction and periodic monitoring for some metals prior to land
application, there is no requirement to test sewage sludges for the presence of organic chemicals in the U. S. To help fill the gaps in
knowledge regarding the presence and concentration of organic chemicals in sewage sludges, the peer-reviewed literature and
official governmental reports were examined. Data were found for 516 organic compounds which were grouped into 15 classes.
Concentrations were compared to EPA risk-based soil screening limits (SSLs) where available. For 6 of the 15 classes of chemicals
identified, there were no SSLs. For the 79 reported chemicals which had SSLs, the maximum reported concentration of 86%
exceeded at least one SSL. Eighty-three percent of the 516 chemicals were not on the EPA established list of priority pollutants and
80% were not on the EPA's list of target compounds. Thus analyses targeting these lists will detect only a small fraction of the
organic chemicals in sludges. Analysis of the reported data shows that more data has been collected for certain chemical classes
such as pesticides, PAHs and PCBs than for others that may pose greater risk such as nitrosamines. The concentration in soil
resulting from land application of sludge will be a function of initial concentration in the sludge and soil, the rate of application,
management practices and losses. Even for chemicals that degrade readily, if present in high concentrations and applied repeatedly,
the soil concentrations may be significantly elevated. The results of this work reinforce the need for a survey of organic chemical
contaminants in sewage sludges and for further assessment of the risks they pose.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Sludge; Biosolids; Land application

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4. Conclusion
Appendix A. Supplementary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
⁎ Corresponding author. Tel.: +1 607 255 8576; fax: +1 607 255 8207.
E-mail address: ezh1@cornell.edu (E.Z. Harrison).

0048-9697/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scitotenv.2006.04.002

mailto:ezh1@cornell.edu
http://dx.doi.org/10.1016/j.scitotenv.2006.04.002


482 E.Z. Harrison et al. / Science of the Total Environment 367 (2006) 481–497
1. Introduction

Sewage sludges are residues generated at centralized
wastewater treatment plants (WWTPs) as a result of the
treatment of wastes released from a variety of sources
including homes, industries, medical facilities, street
runoff and businesses The use of these sludges as soil
amendments is widely practiced in the U.S., where more
than 60% of the 6.2 million dry metric tons (MT) of
sludge produced annually are applied to land (U.S.
Environmental Protection Agency, 1999). Since 1991
when ocean dumping was banned, both the quantity
produced and the percentage land-applied have in-
creased (U.S. Environmental Protection Agency, 1999).

Sewage sludges contain nutrients and organic matter
that can provide soil benefits, but they also contain
contaminants including metals, pathogens, and organic
pollutants. The fate of chemical contaminants entering a
WWTP depends on both the nature of the chemical and
the treatment processes (Zitomer and Speece, 1993).
Organic chemicals may be volatilized, degraded
(through biotic and/or abiotic processes), sorbed to
sludge, or discharged in the aqueous effluent. Degrada-
tion results in the creation of breakdown products that
can be either more or less toxic than the original
compound.

For many hydrophobic organic chemicals, sorption
to the sewage sludge solids is the primary pathway for
their removal from wastewater. This is especially true
of persistent, bioaccumulative toxics that may enter the
waste stream (Petrasek et al., 1983). Even volatile
chemicals, such as benzene, are commonly found in
sewage sludges as a result of sorption to organic
substances in the sludge matrix (Wild et al., 1992).
After they have been separated from wastewater, land-
applied sludges must be treated to reduce pathogens
through one of a number of processes including
anaerobic digestion, lime stabilization, or composting.
Each of these processes has effects on the fate of both
pathogens and the organic contaminants in the sludge
(Rogers, 1996).

The information available on the concentration of
organic chemicals in sewage sludges arises largely from
academic reports or from the national sewage sludge
survey (NSSS) which was conducted by the U.S.
Environmental Protection Agency (EPA) in 1988 (U.S.
Environmental Protection Agency, 1990). The NSSS
was performed by analyzing samples of the final sludge
product collected from approximately 180 wastewater
plants for the presence of 411 chemicals. This survey
was used in the development of the U.S. regulations
(U.S. Environmental Protection Agency, 1996).
Very few countries have rules limiting the concen-
tration of any organic chemicals in sewage sludges
(Beck et al., 1995). The European Union is conside-
ring establishing limits for a handful of organic
chemicals. Under the Clean Water Act, (CFR Section
405 (d)), the rules regarding the concentration of
pollutants permitted in land-applied sewage sludges in
the U.S. are mandated to be protective of human health
and the environment. A biennial review is called for to
determine if there are additional chemicals that might
pose a risk and should thus be subject to regulatory
review.

To date, EPA has not established regulations for any
organic chemicals and there is no federal requirement to
monitor the type or concentration of organic chemicals
in sludges. When promulgating the original rules in
1993 (CFR 40 Part 503), the EPA declined to include
any organic contaminants. There were three criteria that
led to the elimination of all of those considered: 1. the
chemical was no longer in use in the U.S.; 2. the
chemical was detected in 5% or fewer of the sludges
tested in the NSSS; or 3. a hazard screening showed the
chemical to have a hazard index of one or greater (Beck
et al., 1995). Where sufficient data were lacking to
evaluate the hazard, for example the lack of fate and
transport data, that chemical and pathway were also
eliminated from further consideration (U.S. Environ-
mental Protection Agency, 1996).

Concerns with this process include the persistence of
some chemicals in the environment despite their
elimination in commerce, the high detection limits for
some chemicals, and the potential risks posed by
chemicals that were eliminated from consideration
merely due to a lack of data (National Research Council,
2002). In a court-ordered review of additional con-
taminants, the EPA reconsidered regulation of some
organic chemicals. In that review, it eliminated chemi-
cals that were detected in 10% or fewer of the sludges in
the NSSS. Of the 411 analytes in the NSSS 269 were not
detected and 69 were detected in fewer than 10% of the
sludges. Fifteen of the 73 remaining chemicals were
eliminated due to lack of toxicity data (U.S. Environ-
mental Protection Agency, 1996). Hazard screening
analysis was conducted on the remaining chemicals.
Dioxins, furans and co-planar PCBs were the only
organic chemicals that remained and a risk assessment
was then conducted (U.S. Environmental Protection
Agency, 2002). Based on the assessment, EPA decided
not to extend regulation to dioxins or any other organic
pollutant (U.S. Environmental Protection Agency,
2003a). The Round 2 review conducted by the EPA in
2003 was not limited to the chemicals analyzed in the



483E.Z. Harrison et al. / Science of the Total Environment 367 (2006) 481–497
NSSS. It considered 803 chemicals and resulted in the
selection of 15 chemicals as candidates for regulation
based on available human health or ecological risk end
points but not on concentration data from sludges.
Among those were 9 organic chemicals (U.S. Environ-
mental Protection Agency, 2003b).

The National Research Council of the U.S. Academy
of Sciences (NRC) conducted two reviews of the land
application of biosolids (National Research Council,
1996; 2002). Their 2002 report included a comparison
of the limits of detection for samples analyzed in the
NSSS to EPA soil screening limits (SSLs) and pointed
out that high limits of detection for many chemicals in
the NSSS were a concern. The SSLs are conservative
risk-based soil concentrations of selected industrial
pollutants (93 organic and 16 inorganic compounds)
that are used in determining whether a site specific risk
assessment is required at a Superfund site (U.S.
Environmental Protection Agency Superfund, 1996).

The SSLs were used by the NRC as an indicator of
concentrations that might pose a risk requiring remedi-
ation. For 5 of 8 organic chemicals examined in the
NRC report, most sludge samples analyzed in the NSSS
had limits of detection that were higher than the EPA-
established SSLs. Thus the NSSS results were not
sensitive enough to detect pollutant concentrations that,
if present in soil at a Superfund site, would have
triggered a risk assessment. For example, in the case of
hexachlorobenzene (HCB), the NSSS did not detect
HCB in any of the 176 samples tested, thus prompting
EPA to exclude it from regulatory consideration. The
NSSS limits of detection exceeded 5 mg/kg for the
majority of samples and was greater than 100 mg/kg for
4 samples (National Research Council, 2002). Depend-
ing on the pathway of exposure being considered, the
SSLs for HCB range from 0.1 to 2 mg/kg. Only one of
the NSSS samples reached a limit of detection of
0.1 mg/kg. Analysis of the data compiled in this paper
revealed that 9 of the 13 reports of HCB concentrations
in sewage sludges exceeded 0.1 mg/kg and 3 exceeded
2 mg/kg. Thus the majority of samples exceeded an SSL
for HCB.

In addition to concerns regarding analytical limita-
tions, the introduction of new chemicals into commerce,
suggests that there is a need for a new survey in order to
better characterize sludges with respect to the presence
and concentration of contemporary organic chemicals.
Flame retardants, surfactants, chlorinated paraffins,
nitro and polycyclic musks, pharmaceuticals, odorants,
as well as chemicals used in treating sludges (such as
dewatering agents) are among the chemical categories
suggested by the NRC as compounds requiring
additional data collection and consideration in future
risk assessments (National Research Council, 2002).

Although the EPA conducted a limited survey of
sludges in 2001 to determine the concentration of
dioxins, furans and co-planar PCBs, and plans to
conduct a survey of sludges to test for the 9 organic
chemicals being considered for regulation, it is not
proposing a broader survey of organic chemicals in
sludges (U.S. Environmental Protection Agency,
2003b).

2. Methods

To help fill the gaps in knowledge regarding the
presence and concentration of organic chemicals in
sewage sludges, we examined the peer-reviewed
literature and official governmental reports to compile
available data on the concentration of organic chemicals
reported in sludges. In some cases sources did not
contain sufficient information to permit comparison of
chemical concentrations as a function of sludge dry
weight and were therefore not included. One hundred
and thirteen usable data sets were obtained. Reports
were inconsistent in providing individual versus average
or median values so we have reported the ranges
detected and are not able to offer averages. Where
available, average values from a specific report are
noted (supporting information 1). There are several
important aspects of wastewater and sludge treatment
that can affect the fate of organic chemicals. Unfortu-
nately many reports do not include such information.
Where available, the type of treatment is noted
(supporting information 1). Similarly, most reports did
not include information on the type of catchment area or
on significant non-domestic inputs that might contribute
particular chemicals.

The chemicals were grouped into 15 classes and the
range of concentrations reported for each chemical was
recorded. Data were found for 516 chemicals and the
range of concentrations detected in each of the sources
was recorded (supporting information 1). For ease of
presentation, this list was reduced to 267 chemicals
through the grouping of congeners and isomeric
compounds. The range of concentrations for compounds
that have been reported in sewage sludges and the
sources from which these data were obtained are shown
in Table 1.

To provide a context for the sludge concentration
data, we sought soil pollutant concentration standards
with which to compare the sludge concentrations. We
found that the U.S. SSLs, soil clean-up standards in
Ontario and Dutch Intervention values were supported



Table 1
Concentrations of organic chemicals reported in sewage sludges and
sources of those data

Range Data
sources a

mg/kg dry wgt

Aliphatics—short chained and chlorinated
Acrylonitrile 0.0363–82.3 [1]
Butadiene
(hexachloro-1,3-)SSL

ND–8 [1–4]

Butane (1,2,3,4-diepoxy) ND–73.9 [5]
Butanol (iso) ND–0.165 [5]
Butanone (2-) ND–1540 [5]
Carbon disulfideSSL ND–23.5 [5]
Crotonaldehyde ND–0.358 [5]
Cyclopentadiene
(hexachloro) SSL

<0.005 [2]

Ethane (hexachloro)SSL 0.00036–61.5 [3]
Ethane (monochloro) ND–24 [3]
Ethane (pentachloro) 0.0003–9.2 g [3]
Ethane (tetrachloro) <0.1–5.0 [6]
Ethane (trichloro)
isomersSSL

ND–33 [7]

Ethylene (dichloro)SSL <0.01–865 [3,8]
Ethylene (monochloro) <0.025–110 [2,3]
Ethylene (tetrachloro)SSL ND–50 [1–3,5,7,8]
Ethylene (trichloro)SSL ND–125 [2,3,5,7]
Hexanoic acid ND–1960 [5]
Hexanone (2-) ND–12.7 [5]
Methane (dichloro)SSL ND–262 [3,5,8,9]
Methane (monochloro) ND–30 [5]
Methane (tetrachloro)SSL ND–60 [2,3,5–7]
Methane (trichloro)SSL ND–60 [2,5–7]
Methane (trichlorofluoro) ND–3.97 [5]
N-alkanes (polychlorinated) 1.8–93.1 [10]
N-alkanes ND–758 [5]
Organic halides absorbable
(AOX) and extractable
(EOX)

1–7600 [7,11–13]

Pentanone (methyl) ND–0.567 [5]
Polyorganosiloxanes 8.31–5155 [14–18]
Propane (dichloro)
isomersSSL

ND–1230 [1,3,5]

Propane (trichloro) 0.00459–19.5 [1,3]
Propanenitrile
(ethyl cyanide)

ND–64.7 [5]

Propanone (2-) ND–2430 [5]
Propen-1-ol (2-) ND–0.0312 [5]
Propene (trichloro) <0.0010–167 [1]
Propene chlorinated
isomersSSL

0.002–1230 [3,5]

Propenenitrile (methyl) ND–218 [5]
Squalene ND–16.7 [5]
Sulfone (dimethyl) ND–0.784 [5]

Chlorobenzenes
Benzene (dichloro)
isomersSSL

ND–1650 [2,3,5,8,
19,20]

Benzene (hexachloro)SSL ND–65 [1,2,4,7,11,
20–22]

Benzene (monochloro)SSL ND–846 [3,5,19]

Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Chlorobenzenes
Benzene (pentachloro) <0.005–<0.01 [2,20]
Benzene (tetrachloro) <0.001–0.22 [2,20]
Benzene (trichloro)
isomersSSL

ND–184 [2,3,5,19,20]

Flame retardants
Brominated diphenyl
ether congeners (BDEs)

<0.008–4.89 [23–30]

Cyclododecane
(hexabromo) isomers

<0.0006–9.120 [31]

Tetrabromobisphenol A <0.0024–3322 [32]
Tetrabromobisphenol A
(dimethyl)

<0.0019 [32]

Monocyclic hydrocarbons and heterocycles
Acetophenone ND–6.92 [5]
Aniline (2,4,5-trimethyl) ND–0.220 [5]
BenzeneSSL ND–11.3 [3,5,33]
Benzene (1,4-dinitro) ND–4.4 [5]
Benzene (ethyl)SSL ND–65.5 [3,5]
Benzene (mononitro)SSL ND–1.55 [2,5]
Benzene (trinitro) 12 [34]
Benzenethiazole
(2-methylthio)

ND–64.4 [5]

Benzenethiol ND–3.25 [5]
Benzoic acidSSL ND–835 [5]
Benzyl alcohol ND–156 [5]
Analine (chloro)
(P-)SSL

ND–40.2 [5]

Cymene (P-) ND–84.3 [5]
Dioxane (1,4-) ND–35.3 [5]
Picoline (2-) ND–365 [5]
StyreneSSL ND–5850 [3,5]
Terpeniol (alpha) ND–2.56 [5]
Thioxanthe-9-one ND–19.6 [5]
TolueneSSL ND–1180 [3,5,6,8,9,

34,35]
Toluene (chloro) 1.13–324 [5]
Toluene (2,4-dinitro)SSL ND–10 [2,5,34]
Toluene (para nitro) 100 [34]
Toluene (trinitro) 12 [34]
Xylene isomersSSL ND–6.91 [5,8,33,

35–37]

Nitrosamines
N-nitrosdiphenylamineSSL ND-19.7 [5]
N-nitrosodiethylamine ND–0.0038 [38]
N-nitrosodimethylamine 0.0006–0.053 [38]
N-nitrosodi-n-butylamine ND [38]
N-nitrosomorpholine ND–0.0092 [38]
N-nitrosopiperdine ND–trace [38]
N-nitrosopyrrolidine ND–0.0042 [38]

Organotins
Butylitin (di) 0.41–8.557 [39–44]
Butyltin (mono) 0.016–43.564 [39–44]
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Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Organotins
Butyltin (tri) 0.005–237.923 [9,39–44]
Phenyltin (di) 0.1–0.4 [42,43]
Phenyltin (mono) 0.1 [42,43]
Phenyltin (tri) 0.3–3.4 [42,43]

Personal care products and pharmaceuticals
Acetaminophen 0.0000006–4.535 [45]
Gemfibrozil ND–1.192 [45]
Ibuprofen 0.000006–3.988 [45]
Naproxen 0.000001–1.022 [45]
Salicylic acid 0.000002–13.743 [45]
Antibiotics

Ciprofloxacin 0.05–4.8 [46,47]
Doxycycline <1.2–1.5 [47]
Norfloxacin 0.01–4.2 [46,47]
Ofloxacin <0.01–2 [47]
Triclosan (4-chloro-
2-(2,4-dichloro-
phenoxy)-phenol and
related compounds

ND–15.6 [25,48–50]

Fluorescent whitening agents
BLS (4,4'-bis(4-
chloro-3-sulfostyryl)-
biphenyl)

5.4–5.5 [51]

DAS 1 (4,4'-
bis[(4-anilino-6-
morpholino-1,3,5-
triazin-2-yl)-amino]
stilbene-2,2'-disulfonate)

86–112 [51]

DSBP (4,4'-bis
(2-sulfostyryl)biphenyl)

31–50 [51]

Fragrance material
Acetyl Cedrene 9.0–31.1 [52]
Amino Musk Ketone ND–0.362 [37]
Amino Musk Xylene
(AMX)

ND–0.0315 [37]

Cashmeran (DPMI)
(6,7-dihydro-1,1,2,3,3-
pentamethyl-4(5H)-
indanone)

ND–0.332 [34,37]

Celestolide (1-[6-
(1,1-Dimethylethyl)-
2,3-dihydro-1,1-methyl-
1H-inden-4-yl]-ethanone)

0.010–1.1 [34,37,53,54]

Diphenyl Ether ND–99.6 [5,52]
Galaxolide (HHCB)
(1,3,4,6,7,8-Hexahydro-
4,6,6,7,8,8-
hexamethylcyclopenta[g]-
benzopyran)

ND–81 [25,34,37,
52–56]

Galaxolide lactone
(1,3,4,6,7,8-Hexahydro-
4,6,6,7,8,8-
hexamethylcyclopenta[g]-
2-benzopyran-1-one)

0.6–3.5 [54]

Hexyl salicylate Trace–1.5 [52]

Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Fragrance material
Hexylcinnamic
Aldehyde (Alpha)

4.1 [52]

Methyl ionone (gamma) 1.1–3.8 [52]
Musk Ketone (MK)
(4-tertbutyl-3,5-dinitro-2,
6-dimethylacetophenone)

ND–1.3 [37,52,57]

Musk Xylene (1-tert-butyl-3,
5-dimethyl-2,4,6-
trinitrobenzene)

ND–0.0325 [57]

OTNE (1-(1,2,3,4,5,
6,7,8-octahydro-2,
3,8,8-tetramethyl-2-
naphthalenyl))

7.3–30.7 [52]

Phantolide (1-[2,3-
Dihydro-1,1,2,3,3,6-
hexamethyl-1H-inden-
5-yl]-ethanone)

0.032–1.8 [34,37,
53,54]

Tonalide (1-[5,6,7,8-
Tetrahydro-3,5,5,6,8,8-
hexamethyl-
2-naphthalenyl]-ethanone)

ND–51 [25,37,
52–55]

Traseolide (ATII) (1-
[2,3-Dihydro-1,1,2,6-
tetramethyl-3-(1-methyl-
ethyl)-1H-inden-5-yl]
ethanone

0.044–1.1 [53,54]

Pesticides
AldrinSSL ND–16.2 [1–5,21,22,

33,58,59]
Azinphos Methyl ND–0.279 [5]
Benzene

(pentachloronitro)
ND–8.83 [5]

Captan ND–0.968 [5]
ChlordaneSSL ND–16.04 [1,3,5]
Chlorobenzilate ND–0.104 [2,5]
Chloropyrifos ND–0.529 [5]
Ciodrin ND–0.093 [5]
Cyclohexane isomers

(lindane and othersSSL)
ND–70 [1–7,9,11,21,

22,59–62]
DDT and related

congenersSSL
ND–564 [1–5,7,9,

11,21,22,33,
58,60–62]

Diallate ND–0.394 [2,5]
Diazinon ND–0.151 [5]
Dicrotophos (Bidrin) ND–0.550 [5]
DieldrinSSL ND–64.7 [1–7,21,22,

33,60,61]
Dimethoate ND–0.340 [2,5]
Disulfotone <0.0050 [2]
Endosulfans ND–0.280 [2,4,5,21]
EndrinSSL ND–1.17 [1,2,4,5,21,

22,59]
Famphur <0.0050–0.400 [2]

(continued on next page)
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Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Pesticides
Heptachlor epoxidesSSL ND–0.780 [1,2,5,21]
HeptachlorSSL ND–16 [2,3,5,21,22]
Isobenzan ND–0.130 [4]
Isodrin ND [4]
IsophoroneSSL <0.0050–0.08294 [2]
Leptophos ND–0.319 [5]
MethoxychlorSSL <0.015–0.330 [2]
Mevinphos (phosdrin) ND–0.148 [5]
Naled (Dibrom) ND–0.484 [5]
Naphthoquinone (1,4-) <0.0050 [2]
Nitrofen ND–0.195 [5]
Parathion (ethyl) <0.0050–0.380 [2]
Parathion (methyl) <0.0050–0.070 [2]
Permethrin isomers <0.15–163 [20,63]
Phenoxy herbicidesSSL ND–7.34 [1,2,5]
Phenoxypropanoic
acid (trichloro)

ND–0.121 [5]

Phorate (O,O-diethyl
S-[(ethylthio)
methyl]
phosphorodithioate)

<0.0050–0.200 [2]

Phosphamidon ND–0.232 [5]
Pronamide (dichloro
(3,5-)-N-(1,1-
dimethylpropynyl)
benzamide)

<0.0050–0.008 [2]

Pyrophosphate
(tetraethyl)

ND–20 [5]

Quintozene ND–0.100 [4]
Safrol (iso) <0.0050–0.750 [2]
Safrole (EPN) ND–0.545 [2]
ToxapheneSSL 51 [3]
Trichlorofon ND–2.53 [5]
Trifluralin (Treflan) ND–0.235 [5]

Phenols
Bisphenol-A (BPA) 0.00010–32,100 [18,49,64,65]
Hexachlorophene (HCP) 0.0226–1.190 [49]
Hydroquinone 0.14–223 [3]
Hydroxybiphenyls ND–0.172 [64]
PhenolSSL ND–920 [2,3,5,7,

8,36,66]
Phenol chloro
congenersSSL

<0.003–8490 [1–3,5–9,
33,35,49,
61,66–68]

Phenol chloro methyl
congeners

ND–136 [2,3,5,8,9,
61,64]

Phenol methyl
congenersSSL

ND–1160 [2,3,5,7–9,
34,66]

Phenol nitro methyl
congeners

0.2–187 [5]

Phenols nitro
congenersSSL

<0.003–500 [2,3,8]

Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Phthalate acid esters/plasticizers
Bis(2-chloroethyl)
etherSSL

<0.020–0.130 [2]

Bis(2-chloroisopropyl)
ether

<0.150–5.700 [2]

Bis(2-cloroethoxy)
methane

<0.020–0.240 [2]

Di(2-ethylhexyl)
adipate

<0.100–0.450 [2]

PhthalatesSSL ND–58,300 [2,3,5–9,
28,33,36,
58,69–73]

Polychlorinated biphenyls, naphthalenes, dioxins and furans
Aroclor 1016 0.2–75 [6,74]
Aroclor 1248 ND–5.2 [5,6,33,58]
Aroclor 1254 0.0667–1960 [1,5]
Aroclor 1260 ND–433 [1,5,6,58,60]
Biphenyl (decachloro) 0.11–2.9 [1]
Biphenyls
(polybrominated)

431 [3]

Dibenzofuran ND–59.3 [5]
Dioxins and furans
(polychlorinated
dibenzo)

ND–1.7 [5,8,72,
75–81]

PCB congeners ND–765 [2–5,7,11,
13,21,22,28,
35,53,59,
61,71,72,
79,81–87]

Phenylether (chloro) <0.020 [2]
Terphenyls and
naphthalenes
(polychlorinated)

ND–11.1 [2,3,5,9,
28,53]

Polynuclear aromatic hydrocarbons
AcenaphtheneSSL ND–6.6 [2,5,8,21,53,

82,88]
Acenaphthylene 0.00360–0.3 [2,8,21,53]
AnthraceneSSL ND–44 [2,3,5,8,21,

28,31,53,
74,88,89]

Benzidine 12.7 [3]
Benzo(a)anthraceneSSL ND–99 [2,3,5,8,

21,53,
82,88–90]

Benzo[ghi]perylene ND–12.9 [1,2,5–8,
21,22,28,
53,88–91]

Benzofluoranthene
congenersSSL

0.006–34.2 [3,89]

Benzofluorene
congeners

ND–8.1 [62,89]

Benzopyrene
congenersSSL

ND–24.7 [1–3,5–8,
11,21,22,28,
33,53,62,
82,88–91]
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Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Polynuclear aromatic hydrocarbons
Biphenyl ND–15,300 [3,5,53]
ChryseneSSL ND–32.4 [3,5,8,21,53,

82,88,90]
Chrysene+triphenylene 0.01–14.7 [2,89]
Dibenzoanthracene

congenersSSL
ND–13 [2,3,8,21,53,

88,89,91]
Dibenzothiophene ND–1.47 [5]
Diphenyl amine ND–32.6 [5]
FluorantheneSSL ND–60 [1–3,5–8,21,

22,28,33,53,62,
82,88–90]

FluoreneSSL <0.01–8.1 [2,8,21,53,
82,88]

Fluorene (nitro) 0.941 [28]
Indeno(1,2,3-c,d)

pyreneSSL
ND–9.5 [2,7,8,21,22,

28,53,88–91]
NaphthaleneSSL ND–6610 [2,3,5,6,8,21,

36,53,62,88]
Naphthalene

methyl isomers
ND–136 [2,5,28,53]

Napthalene
methyl congeners

Napthalene nitro
congeners

ND–0.0798 [28]

Perylene ND–69.3 [3,5,53,89,91]
Phenanthrene <0.01–44 [2,3,5,6,

8,21,28,53,
62,82,88–90]

Phenanthrene
methyl isomers

ND–37.4 [5,53]

PyreneSSL 0.01–37.1 [2,3,5,6,
8,21,53,
82,88–90]

Pyrene (phenyl) 0.06–6.86 [1]
Retene (7-isopropyl-

1-methylphenanthrene)
0.260 [28]

Total PAH ND–199 [9,11,28,
72,86]

Triphenylene ND–15.4 [5]

Sterols, stanols and estrogens
Campestanol (5a+5b) 3.0–14 [55]
Campesterol 6.3 [55]
Cholestanol (5a-) 22.7 [49,87]
Cholesterol 57.4 [55]
Coprostanol 216.9 [55]
Estradiol (17b) 0.0049–0.049 [92,93]
Estrone 0.016–0/0278 [92,93]
Ethinylestradiol (17a) <0.0015–0.017 [92,93]
Sitostanol (5a-b+5b-b-) 14.1–93.9 [55]
Sitosterol (b-) 29.6–31.1 [55]
Stigmastanol (5a-+5b) 1.9–12.9 [55]
Stigmasterol 6.7 [55]

Table 1 (continued)

Range Data
sources a

mg/kg dry wgt

Surfactants
Alcohol ethoxylates ND–141 [70,94,95]
Alkylbenzene sulfonates <1–30,200 [6,7,9,

70–72,74,
85,94,96–98]

Alkylphenolcarboxylates 10–14 [92]
Alkylphenolethoxylates ND–7214 [2,7,25,28,

49,69,71,72,
85,90,92,
94,99–101]

Alkyphenols (nonyl
and octylphenol)

ND–559,300 [2,6,9,18,25,
28,36,49,64,
69,74,92,
95,99–107],

Coconut diethanol amides 0.3–10.5 [70]
Poly(ethylene glycol)s 1.7–17.6 [70]

Triaryl/alkyl phosphate esters
Cresyldiphenyl phosphate 0.61–179 [3]
Tricresyl phosphate 0.069–1650 [3]
Tricresyl phosphate <0.020–12.000 [2]
Tri-n-butylphosphate <0.020–2.400 [2]
Triphenylphosphate <0.020–1.900 [2]
Trixylyl phosphate 0.027–2420 [3]

See Supporting Information 1 for further detail.
Boldfaced=one or more reported concentrations exceed an SSL. SSLs
may be established only for a particular congener. Table 1 groups
congeners and where any one of the congener concentration exceeds
an SSL for that congener, the group of congeners is shown in bold.
Available data for specific congeners is shown in supporting
information 2.
SSL indicates that SSLs have been established for one or more congener
in this group.
ND indicates not detected where the lower limit of detection is not
specified. >XX indicates not detected at the specified (XX) limit of
detection.
a The data sources for this table are identified by number and cited

below as a part of this table.
Data sources:
1. Jacobs LW, O'Connor GA, Overcash MA, Zabik MJ, Rygiewicz, P.
Land application of sludge: food chain implications. In Effects of trace
organics in sewage sludges on soil–plant systems and assessing their
risk to humans, 1987.
2. Torslov J, Samsoe-Peterson L, Rasmussen, JO, Kristensen P. Use of
waste products in agriculture: contamination level, environmental risk
assessment and recommendations for quality criteria. VKI Institute for
the Water Environment, 1997: Ministry of Environment and Energy
Denmark, Danish EPA.
3. U.S. Environmental Protection Agency. An overview of the
contaminants of concern in the disposal and utilization of municipal
sewage sludge, 1983.
4. Katsoyiannis A, Samara C. Persistent organic pollutants (POPs) in
the sewage treatment plant of Thessaloniki, northern Greece:
occurrence and removal. Water Res, 2004, 38, 2685–2698.
5. U.S. Environmental Protection Agency. Technical support docu-
ment for the round two sewage sludge pollutants. EPA-822-R-96-003,
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1996a, Office of Water, Office of Science and Technology, Health and
Ecological Criteria Division: Washington.
6. Wild SR, Jones KC. Organic chemicals entering agricultural soils in
sewage sludges: screening for their potential to transfer to crop plants
and livestock. Sci Total Environ, 1992, 119, 85–119.
7. Drescher-Kaden U, Bruggemann R, Matthes B, Matthies M.
Contents of organic pollutants in German sewage sludges, in Effects of
organic contaminants in sewage sludge on soil fertility, plants and
animals, J.E. Hall, D.R. Sauerbeck, and P. L'Hermite, Editors. 1992,
Commission of the European Communities: Luxembourg.
8. Bright DA, Healey N. Contaminant risks from biosolids land
application: contemporary organic contaminant levels in digested
sewage sludge from five treatment plants in greater Vancouver, British
Columbia. Environ Pollut, 2003, 126, 39–49.
9. Schnaak W, Kuchler T, Kujawa M, Henschel K-P, Subenbach D,
Donau R. Organic contaminants in sewage sludge and their
ecotoxicological significance in the agricultural utilization of sewage
sludge. Chemosphere, 1997, 35, 5–11.
10. Nicholls CR, Allchin CR, Law RJ. Levels of short and medium
chain length polychlorinated n-alkanes in environmental samples from
selected industrial areas in England and Wales. Environ Pollut, 2001,
114, 415–430.
11. Frost P, Camenzind R, Magert A, Bonjour R, Karlaganis, G.
Organic micropollutants in Swiss sewage sludge. J Chromatogr A,
1993, 643, 379–388.
12. Kulling D, Candinas T, Stadelmann FX. Nahrstoffe und
Schwermetalle im Klarschlamm. Agrarforschung, 2002, 9, 200–205.
13. Chevreuil M, Granier L, Chesterikoff A, Letolle R. Polychlori-
nated biphenyls partitioning in waters from river, filtration plant and
wastewater plant: the case for Paris (France). Water Res, 1990, 24,
1325–1333.
14. Fendinger NJ, McAvoy DC, Eckhoff WS, Price BB. Environmen-
tal occurrence of polydimethylsiloxane. Environ Sci Technol, 1997,
31, 1555–1563.
15. Batley GE, Hayes JW. Polyorganosiloxanes (Silicones) in the
aquatic environment of the Sydney region. Aust J Mar Freshw Res,
1991, 42, 287–293.
16. Watanabe N, Yasuda Y, Kato K, Nakamura T, Funasada R,
Shimokawa K, Sato E, Ose Y. Determination of trace amounts of
siloxanes in water, sediments and fish tissues by inductively coupled
plasma emission spectrometry. Sci Total Environ, 1984, 34, 169–176.
17. Watanabe N, Nakamura T, Watanabe E, Sato E, Ose Y. Distribution
of organosiloxanes (silicones) in water, sediments and fish from the
Nagara River watershed. Japan. Sci Total Environ, 1984, 35, 91–97.
18. Gehring M, Vogel D, Tennhardt L, Weltin D, Bilitewski B.
Efficiency of sewage sludge treatment technologies at eliminating
endocrine active compounds. Waste Management and the Environ-
ment II, 2004, 621–630.
19. Wang M-J, McGrath SP, Jones KC. Chlorobenzenes in field soil
with a history of multiple sewage sludge applications. Environ Sci
Technol, 1995, 29, 356–362.
20. Rogers HR, Campbell JA, Crathorne B, Dobbs, AJ. The
occurrence of chlorobenzenes and permethrins in twelve U.K. sewage
sludges. Water Res, 1989, 23, 913–921.
21. Berset JD, Etter-Holzer R. Quantitative determination of
polycyclic aromatic hydrocarbons, polychlorinated biphenyls and
organochlorine pesticides in sewage sludges using supercritical fluid
extraction and mass spectrometric detection. J Chromatogr A, 1999,
852, 545–558.
22. Witte H, Langenohl T, Offenbacher, G. Investigation of the entry of
organic pollutants into soils and plants through the use of sewage

Notes to Table 1: sludge in agriculture. Part A: organic pollutant load in sewage sludge.
Korresp Abw, 1988, 13, 118–125.
23. North KD. Tracking polybrominated diphenl ether releases in a
wastewater treatment plant effluent, Palo Alto, California. Environ Sci
Technol, 2004, 38, 4484–4488.
24. Hale RC, La Guardia MJ, Harvey EP, Mainor TM. Potential role of
fire retardant-treated polyurethane foam as a source of brominated
diphenyl ethers to the US environment. Chemosphere, 2002, 46,
729–735.
25. La Guardia M, Hale RC, Harvey E, Bush EO, Mainor TM, Gaylor
MO. Organic contaminants of emerging concern in land-applied
sewage sludge (biosolids). J Res Sci Tech, 2004, 1, 111–122.
26. Hellstrom T. Brominated flame retardants (PBDE and PBB) in
sludge—a problem? in The Swedish Water and Wastewater Associ-
ation, 2000.
27. de Boer J, de Boer K, Boon, JP. Polybrominated biphenyls and
diphenyl ethers, in The handbook of environmental chemistry.
Paasivirta J, Editor. 2000, Springer: Berlin.
28. Vikelsoe J, Thomsen M, Carlsen L, Johansen E. Persistent organic
pollutants in soil, sludge and sediment. NERI technical report no. 402.
2002, National Environment Research Institute. Ministry of the
Environment. p. 98.
29. Hale RC, LaGuardia MJ, Harvey EP, Gaylor MO, Mainor TM,
Duff, WH. Persistent pollutants in land-applied sludges. Nature, 2001,
412, 140–141.
30. Litz, N. Some investigations into the behavior of pentabromodi-
pheyl ether (PeBDE) in soils. J Plant Nutr Soil Sci, 2002, 165, 692–
696.
31. Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP,
Belpaire C, Leonards PEG, Leeuwen SPJV, De Boer, J. Distribution
and fate of HBCD and TBBPA brominated flame retardants in North
Sea estuaries and aquatic food webs. Environ Sci Technol, 2004, 38,
5497–5504.
32. Sellstrom, U, Jansson, B. Analysis of tetrabromobisphenol A in a
product and environmental samples. Chemosphere, 1995, 31, 3085–
3092.
33. O'Connor, GA. Organic compounds in sludge-amended soils and
their potential for uptake by crop plants. Sci Total Environ, 1996, 185,
71–81.
34. Klee N, Gustavsson L, Kosmehl T, Engell M. Changes in toxicity
and genotoxicity of industrial sewage sludge samples containing nitro-
and animo-aromatic compounds following treatment in bioreactors
with different oxygen regimes. Environ Sci Pollut Res Int, 2004, 11,
313–320.
35. Wilson SC, Alcock RE, Sewart AP, Jones KC. Organic chemicals
in the environment: persistence of organic contaminants in sewage
sludge-amended soil: a field experiment. J Environ Qual, 1997, 26,
1467–1477.
36. Kirchmann H, Tengsved A. Organic pollutants in sewage sludge.
Swedish J Agric Res, 1991, 21, 115–119.
37. Herren, D, Berset, JD. Nitro Musks, Nitro musk amino metabolites
and polycyclic musks in sewage sludges: quantitative determination by
HRGC-ion-trap-MS/MS and mass spectral characterization of the
amino metabolites. Chemosphere 2000. 40, 565–574.
38. Mumma RO, Raupach DC, Waldman JP, Tong SSC, Jacobs ML,
Babish JG, Hotchkiss JH, Wszolek PC, Gutenman WH, Bache CA,
Lisk DJ. National survey of elements and other constituents in
municipal sewage sludges. Arch Environ Contam Toxicol, 1984, 13,
75–83.
39. Chau YK, Zhang S, Maguire RJ. Occurrence of butyl in species
in sewage and sludge in Canada. Sci Total Environ, 1992, 121,
271–281.
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Notes to Table 1:
40. Fent K, Muller MD. Occurrence of organotins in municipal
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Environ Sci Technol, 1991, 25, 489–493.
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by risk-based analyses. The Ontario regulatory maxi-
mum soil concentration limits address several different
land uses and pathways of exposure for 118 chemicals
(Ontario Ministry of the Environment, 2004). The Dutch
system includes target values that seek to prevent harm
to human and ecological systems as well as intervention
values where predicted harm requires clean-up to be
implemented. The Ontario and Dutch values are
generally comparable to the U.S. SSLs, but values for
specific chemicals are not identical, presumably due to
differences in assumptions (Netherlands Ministry of
Housing Spatial Planning and Environment, 2000).

For the purposes of this paper, we compared the
reported sludge concentrations to the SSL values for
those compounds for which EPA has established an
SSL. The SSLs are not regulatory standards, but are
guidelines used by EPA relative to cleaning up
industrially-contaminated sites. Sites with soil concen-
trations lower than the SSLs are considered “clean,”
while sites with higher concentrations require site-
specific risk analysis. Using default values for a
residential exposure scenario, the EPA risk-based
SSLs address exposure pathways including direct
ingestion of contaminated soil, inhalation, dermal
exposure, drinking of groundwater contaminated by
migration of chemicals through soil, and ingestion of
homegrown produce contaminated via plant uptake (U.
S. Environmental Protection Agency Superfund, 1996).
The groundwater pathway includes two values, one
assuming no dilution or attenuation (1 DAF) and the
other assuming a 20-fold dilution/attenuation (20 DAF).
SSLs do not include risks posed by ingesting animal
products grown on contaminated soils, nor do they
address environmental and ecologic risks. These human
health SSLs are based on a 10−6 risk for carcinogens or
a hazard quotient of 1 for non-carcinogens and separate
SSL concentrations are listed for four different exposure
pathways (ingestion, inhalation, groundwater 20 DAF,
groundwater 1 DAF). For most organic contaminants,
the groundwater SSL that assumes no attenuation or
dilution is the most restrictive concentration (supporting
information 2).

It is likely that the concentration of a chemical in a
soil to which sludge has been applied would be lower
than the concentration in the sludge itself due to mixing
and subsequent dilution with soil as well as through
degradation, volatilization and leaching processes. A
single application of sludge tilled into the soil would be
diluted approximately 100-fold, but concentrations
would increase with repeated applications when losses
are not as great as application rates and would also be
higher in surface soils if sludge is not tilled into the soil
such as in pasture application. Despite the differences
between contaminated soils and sludges, the NRC
(National Research Council, 2002) used SSLs as an
EPA-established metric to suggest whether further
evaluation might be warranted. We thus report sludge
concentrations of organic contaminants that exceed an
SSL (Table 1; supporting information 2).

Two other EPA-generated lists of chemicals were
also used to evaluate the organic chemicals reported in
sludges. The first is a list of chemicals generated in 1979
and modified in 1981 for which technology-based water
effluent limitations were required (Keith and Telliard,
1979). These 126 chemicals, known as priority
pollutants, reflect the knowledge of contaminants in
industrial wastewater effluents during the 1970s. One
hundred and eleven of these are organic chemicals.
Although there are no federal requirements for moni-
toring these compounds in sewage sludges, some states,
including New York (New York State Department of
Environmental Conservation, 2003), require screening
of land-applied sludges for these priority pollutants. The
second list includes chemicals that laboratories
performing analyses on Superfund site soils must be
able to detect and quantify. These 143 chemicals are
known as target compounds (U.S. Environmental
Protection Agency, 2004). Table 2 provides a summary,
by class, of the number of chemicals reported in sludges
that fall into these groups.

3. Results and discussion

Tens of thousands of organic chemicals are currently
in use, however sludge concentration data could only be
found for 516 organic chemicals in the peer reviewed
literature and official government reports (supporting
information 1). Table 2 shows the number of com-
pounds in each of the 15 classes for which concentration
data were found, and the number of studies from which
these data were obtained.

Ninety of the 111 organic priority pollutants and 101
of the 143 target compounds were reported in sludges
(Table 2). No data were found for the other 21 organic
priority pollutants or 42 target compounds. Eighty-three
percent of the reported chemicals were not on the
priority pollutant list and 80% were not on the target
compounds list. Thus monitoring sludges for priority
pollutants will not capture the vast majority of chemicals
that may be present.

Six of the 15 chemical classes for which data were
found did not contain compounds included among the
priority pollutants, target compounds, or those com-
pounds with SSLs (Table 2). This may be due in part to

http://www2.minvrom.nl/Docs/internationaal/annexS_I2000.pdf
http://www2.minvrom.nl/Docs/internationaal/annexS_I2000.pdf


Table 2
Number of chemicals reported in sludges in each class, number of studies from which data were obtained, number that are priority pollutants, target
compounds or for which there are SSLs, and number for which maximum reported concentrations in sludges exceed an SSL

# chem # of studies # PP chem # TC chem # chem with SSLs # chem that exceed an SSL

Aliphatics 58 19 16 17 16 15
Chlorobenzenes 11 13 6 7 5 5
Flame retardants 29 11 0 0 0
Monocyclic HC 34 12 7 12 11 10
Nitrosamines 7 1 2 1 1 1
Organotins 6 7 0 0 0
PCPs 36 17 0 0 0
Pesticides 71 20 18 19 18 15
Phenols 40 20 10 14 9 8
Phthalate 19 16 9 8 6 6
PCBs 108 38 5 6 0
PAHs 52 25 18 18 13 8
Sterols and stanols 16 3 0 0 0
Surfactants 23 33 0 0 0
Triaryl/alkyl phosphate.esters 6 2 0 0 0
Total 516 113 a 91 102 79 68

a Note: # of studies is not a sum of the list above because some studies include data for more than one class.
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the fact that all three of these lists arose out of a response
to a concern over the fate of industrial contaminants.
Thus some chemicals, such as personal care products,
that are present in sludges primarily as a result of non-
industrial sources, do not appear on those lists. In
addition, the priority pollutant list is 25 years old, so
industrial chemicals of current and emerging concern,
such as polybrominated diphenyl ethers, which were not
in wide use at that time, were not included.

There are SSLs for 15% of the 516 organic chemicals
reported in sludges. The reported maximum sludge
concentration exceeded an SSL for 86% of the
chemicals for which there are SSLs (Table 2, supporting
information 2). This high proportion is observed in most
classes, with PAHs as an exception.

The proportion of individual reports that exceed an
SSL for a particular chemical was examined to
determine whether such exceedances were the result of
single high-concentration reports or whether most
Table 3
The percentage of reported concentrations that exceed an SSL for chemicals

% for which 100%
reports exceed SSL

% for which 75–99%
reports exceed

% fo
repo

Aliphatics 75 6 19
Chlorobenzenes 20 20 60
Monocyclic 75 8 0
Nitrosamines 100
Pesticides 31 13 25
Phenols 22 22 33
Phthalate 17 0 17
PAHs 0 23 8

See Supporting Information 2 for the specific chemicals and SSLs.
reported values exceeded an SSL. The data show that
for chemicals in some classes such as aliphatics and
monocyclic hydrocarbons, most reported concentrations
for chemicals within that class exceed an SSL while for
other classes including phthalates and polyaromatic
hydrocarbons, a much smaller percentage of the
reported concentrations were high enough to exceed
an SSL (Table 3). However, even within these classes,
there are some chemicals for which a high percentage of
reports exceed an SSL (Fig. 1).

As a result of an evaluation of additional sludge-
borne chemicals for which regulation should be
considered, the EPA has suggested that it will conduct
limited additional sludge testing including efforts to
monitor the presence of 9 organic chemicals (acetone,
anthracene, carbon disulfide, 4-chloroaniline, diazinon,
fluoranthene, methyl ethyl ketone, phenol, and pyrene)
(U.S. Environmental Protection Agency, 2003b). In the
present work, no data were found for two of the 9
within a class for which there are SSLs

r which 50–74%
rts exceed

% for which 25–50%
reports exceed

% for which 0–25%
reports exceed

0 0
0 0
0 17

6 19
11 11
17 50
15 54
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compounds (acetone and methyl ethyl ketone). Data
were found for the other 7 compounds (Table 1;
supporting information 1; supporting information 2).

Anthracene was reported in 12 studies with a range
from 0.0088 to 44 mg/kg. Six studies detected more than
1 mg/kg, but none exceeded an SSL. Only the NSSS
reported concentrations for carbon disulfide, p-chlor-
oaniline and diazinon, with maximum concentrations of
23.5, 40.2 and 0.15 mg/kg respectively. The carbon
disulfide value exceeded the lower groundwater SSL
and the p-chloroaniline value greatly exceeded both
groundwater SSLs. There are no SSLs for diazinon.
Fluoranthene was reported in 17 studies with concen-
trations ranging from 0.01 to 60 mg/kg, but none
exceeded any SSL. Seven studies reported phenol
ranging from 0.002 to 920 mg/kg, with concentrations
of over 100 mg/kg reported in four studies, suggesting
that these high concentrations were not a result of a
particular source of contamination or analytic error. Six
studies reported concentrations exceeding the lower
groundwater SSL and four exceeded both groundwater
SSLs. Eleven studies reported pyrene concentrations
ranging from 0.1 to 36.8 mg/kg, but none exceeded any
SSL. These data suggest that several of the contaminants
that EPA proposes to study are not likely to be of
concern since data on their concentration in sludges
exist and demonstrate concentrations below SSLs
indicating they are unlikely to be present in concentra-
tions high enough to be of significant risk.

Benzo(a)pyrene and hexachlorobenzene were sug-
gested as pollutants requiring further analysis by the NRC
in a 1996 report (National Research Council, 1996). In
the present work, 19 sources reported benzo(a)pyrene in
sludges at concentrations from <0.01 to 25 mg/kg, with
24 of 27 reported concentrations exceeding one or more
SSL (Fig. 1; supporting information 2). Hexachloroben-
zene was reported by 9 sources. Nine of 13 reported
concentrations exceed an SSL (Fig. 2; supporting
information 2). These data suggest the value of assessing
the risks posed by these chemicals in sludges.

Another group of compounds suggested as a possible
concern is nitrosamines. Given the toxicity of nitrosa-
mines and the potential for their formation during the
wastewater treatment process, it is surprising that only
two sources from the 1980s report nitrosamine concen-
tration in sludges. Of the 7 compounds reported, there
are SSLs for only one and the reported concentrations
for that compound (N-nitrosdiphenylamine) exceed the
groundwater and ingestion/dermal SSLs. The NSSS
detected N-Nitrosodiphenylamine in 1% of the sludges
tested and hence it was eliminated from regulatory
consideration by EPA. The maximum concentration
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detected was 19.7 mg/kg. Most samples had a limit of
detection exceeding 1 mg/kg although detection limits
as high as 800 mg/kg were also reported. The high limits
of detection in many cases helped prompt the NRC to
speculate that N-Nitrosodimethylamine may be present
in some sludges at concentrations of concern (National
Research Council, 1996).

Reported concentrations exceeding an SSL should
not be interpreted to indicate a significant risk, but rather
indicate that the concentration of those chemicals would
be sufficient to require further assessment if present in
soil at the same level. While sludge management and
environmental processes may alter the concentrations of
these chemicals in field situations through mixing with
soil, leaching, degradation and other processes, the
number of SSL exceedences suggests that assessment of
the potential risks may be warranted.

The use of SSLs as a screening tool, does not address
some potential routes of human exposure that may
represent significant risk (Wild and Jones, 1992),
including food chain transfer through the consumption
of animal products. For organic contaminants in land
applied sludges, this has been suggested as one of the
two exposure pathways representing the highest risk, the
other being direct ingestion of soil and sludge by humans
(Chaney et al., 1996). Application of sludge products to
lawns, athletic fields and home gardens could provide a
route for direct ingestion. The lipophilic nature of many
organic chemicals found in sludges causes them to
accumulate in the fat of exposed animals. Livestock may
be exposed to sludge contaminants through sludge
adhering to plant materials as well as through the
ingestion of soil when sludges are applied to pasture
(Fries, 1996).

Much of the work evaluating the potential risks
posed by organic chemicals in sludges addresses human
health risks. However, in addition to potential human
impacts, organic chemicals in land applied sludges may
pose environmental or ecological risks. The use of SSLs
as a trigger does not account for these risks as most SSLs
are currently based only on human health criteria. A
number of the chemicals detected in sludges have been
shown to function as endocrine disrupters. For example,
nonylphenols which are present in sludges at relatively
high concentrations (concentrations greater than
1000 mg/kg are not unusual), may be of concern
because of their potential impact on wildlife (Environ-
ment Canada, 2004), even though they are unlikely to
represent a major direct human health risk. Soil
processes may also be impacted by organic chemical



495E.Z. Harrison et al. / Science of the Total Environment 367 (2006) 481–497
contaminants in land applied sludges as suggested by
observed fungitoxic effects (Schnaak et al., 1997).

Specifying organic chemicals that should bemonitored
in sludges is not a simple task because it necessitates a
degree of analytical competence that may not be
widespread. The EPA has addressed this issue with
respect to Superfund sites by developing a list of target
compounds which includes priority pollutants in addition
to other compounds. Certified laboratories performing
analyses of Superfund samples are required to be able to
test for these target compounds. As mentioned above,
80% of the organic chemicals reported in this paper,
however, were not target compounds and could go
undetected even in certified laboratories unless expensive
mass spectral analyseswere also performed.While the use
of standardized methods that have been validated for
individual chemicals is essential to ensure data quality, on-
going screening and validation efforts using generalized
methods and robust detection technologies are required in
order to identify chemicals of emerging concern.

For many compounds, there was wide variation in the
reported concentrations found in sewage sludges. There
are a number of potential sources of this variation. Discre-
pancies in analyticalmethodsmay account for some of the
differences in the range of concentrations reported in this
paper (Pryor et al., 2002). For most of the chemicals, no
standard methods have been established for either sample
extraction or analyte detection. The importance of
methodological variation was clearly demonstrated in
one report examining extraction efficiency, where a nearly
five-fold difference was found in the concentration of
several organic chemicals in sludge samples simply as a
result of using different solvents (Bolz et al., 2001) and in
another report where drying methods resulted in similarly
large differences (Scrimshaw et al., 2004).

For some contaminants, differences in the source
inputs to the WWTP may explain the range (Bodzek and
Janoszka, 1999). For example, the high concentrations
reported for some of the polynuclear aromatic hydro-
carbons (PAHs) in one study (Constable et al., 1986) were
likely due to inputs from local industry including two steel
mills. Due to the large number of sludges sampled in the
NSSS, that survey included a wide range of concentra-
tions and yielded the highest reported concentrations for a
number of contaminants (supporting information 1).

Another source of variability in chemical concentra-
tions may be the type of treatment to which the sludges
were subjected. The impact of this variablewas difficult to
gauge, however, as many reports did not provide
information about wastewater and sludge processing
methods. Where such information was available, it was
noted (supporting information 1). Since pollutant con-
centrations have been found to vary significantly with
different types of processing (Wild and Jones, 1989),
some of the variation in concentrations may have been a
result of the different treatments towhich the sludges were
subjected (Constable et al., 1986; Wild and Jones, 1989;
Zitomer and Speece, 1993;Rogers, 1996) or to differences
in sludge retention time (Ternes et al., 2004).

Changes in chemical use over time is another
potential source of the large range in reported
concentrations. The references from which data were
obtained go back as far as 1976, though most were from
the 1980s or later. Because of changes in chemical
usage, including bans on some chemicals, the introduc-
tion of new chemicals and the increasing use of others,
the use of old data can be problematic. A new survey of
organic chemicals in sludges is needed since the NSSS
dates back to 1988 (National Research Council, 2002).
Due to the paucity of data, however, even older studies
were included in this paper and the date of sampling was
included when available (supporting information 1).

The vast majority of the data found were for sludges
from the U.S. or Western Europe where chemical use
and wastewater treatment are relatively similar, resulting
in similar pollutant concentrations. There were, howev-
er, some noteworthy differences. In several European
countries, for example, bans or the voluntary elimina-
tion of compounds such as penta-brominated diphenyl
ethers and nonylphenol have been enacted. As a result,
concentrations of these chemicals in sludges from those
countries have decreased in recent years (Jobst, 1998).

There are also important differences between the
European and U.S. approaches to the management of land
application of sludges that would likely result in lower soil
loadings of contaminants inmost European countries. The
soil concentration of a sludge-borne pollutant after land
application is not only a function of the concentration of
the chemical in the sludge, but also the amount of sludge
applied.A number of European countries limit application
rates either through direct limits on the number of dryMT/
ha/yr or by limiting application to P-based agronomic
rates, which are far more restrictive than theN-based rates
used in the U.S. In Denmark, for example, no more than
30 kg/ha/yr of P can be applied (Ministry of Environment
and Energy, 1997). This equates to an application rate of
approximately 1 dry MT/ha/yr. While quantitative limits
vary among the European countries, most limit applica-
tion to a maximum of 1–4 dry MT/ha/yr (Schowanek et
al., 2004). In conducting risk assessments, the European
Commission assumes an application rate of 5 dry MT/ha/
yr (European Commission Joint Research Centre, 2003).
This compares to 10 dryMT/ha/yrwhichwas the assumed
high-end application rate used by EPA in developing the
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regulations for land application (U.S. Environmental
Protection Agency, 1995). Another critical management
strategy pertains to the prohibition of pasture-application
in some countries, which could reduce the potential
contamination of animal products.

Other management practices such as depth of mixing
into the soil and losses through various environmental
processes will also affect chemical concentrations in
soils after land application. Degradation is an important
component of loss, but may be incomplete or slow, even
for relatively easily degraded chemicals such as linear
alkyl benzene sulfonates (LAS). LAS is present at such
high concentrations in sludges (up to 3% by weight) that
incomplete degradation coupled with repeated applica-
tions could result in consistently elevated LAS concen-
trations in soils. This was demonstrated in one study that
detected over 10mg/kg six years after land application of
sludge. Importantly, no further decrease was found after
two more years, indicating that the residual LAS was
resistant to degradation (Carlsen et al., 2002).

4. Conclusion

More data are needed on the chemicals that are in
sludges today and on the temporal trends for those
chemicals. Relying on existing lists of chemicals such as
priority pollutants will not identify many chemicals of
current concern.

To make more informed assessments about the
impact of sludge processing on chemical concentra-
tions, more information on the type of treatment (both
of the wastewater and the sludge) and the sludge
residence time as well as the nature of significant non-
domestic inputs is needed. Detection methods and
limits of detection need to be reported. Where multiple
samples are analyzed, individual data points as well as
median and means should be reported since averaging
values among several sludges may obscure informa-
tion relating to the differences due to inputs or
treatment.

This paper demonstrates that there are groups of
chemicals for which there are relatively abundant sludge
concentration data (such as PCBs, pesticides and PAHs),
while there are others for which few data have been
collected (such as nitrosamines). Certain classes of
chemicals also are shown to have high percentage of
reported concentrations that exceed SSLs, suggesting
that analysis of additional chemicals in those classes
may be warranted. Few data exist on the fate of sludge-
borne chemicals in field soils and such research is
critical to assessing the risks posed by sludge
application.
Evaluating the risks posed by individual chemicals,
let alone mixtures requires multiple assumptions that
can lead to unacceptably high levels of uncertainty.
Current limitations in our knowledge base regarding the
amount and type of chemicals in sludges exacerbate this
problem, as does the limited availability of fate and
toxicity data, for both human and non-human receptors.
As sludge application occurs on farms, forests, and
mines, as well as residential and recreational land,
humans, wildlife and soil organisms may all be exposed
to the organic contaminants present in sludges. Filling
the gaps in knowledge regarding the concentration, fate
and toxicity of sludge-borne contaminants is critical if
the risks associated with land application are to be
adequately characterized.

Appendix A. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at doi:10.1016/j.
scitotenv.2006.04.002.
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