GHD UrbanUtilities

David Solley Senior Technical Director, GHD Wakib Khan | Urban Utilities Paul McPhee | Urban Utilities Casey Magee | GHD

Enhanced In-Digester Struvite Phosphorus Recovery — Putting the "E" in Circular Economy

Enhanced In-Digester Struvite Phosphorus Recovery

Putting the "E" in Circular Economy

Urban Utilities

GHD

David Solley

Senior Technical Director | GHD

Wakib Khan | Urban Utilities Paul McPhee | Urban Utilities Casey Magee | GHD

Acknowledgement & respect

GHD acknowledges Aboriginal and Torres Strait Islander peoples as the Traditional Custodians of the land, water and sky throughout Australia on which we do business. We recognise their strength, diversity, resilience and deep connections to Country. We pay our respects to Elders of the past, present and future, as they hold the memories, knowledges and spirit of Australia. GHD is committed to learning from Aboriginal and Torres Strait Islander peoples in the work we do.

Introduction

Luggage Point WWTP:

- 133 ML/d ADWF
- 800,000 EP

Initiated to solve struvite/MAP blockages:

- Digested sludge transfer pipework
- Centrate pumps and pipework causing dewatering bottleneck / significant downtime
- Fortnightly maintenance to clear blockages
- Maintenance activities safety
- Centrifuge bowl abrasion wear?

Options considered:

- Reduced digested sludge pH
- Ferrous dosing
- Anti-scalant dosing
- Centrate dilution
- Centrate struvite precipitation
- Digested sludge struvite precipitation

ANZBP National Biosolids Conference 2023 I © 2022 GHD. All rights reserved.

High Maintenance Effort/Cost

- Jet rodding, manual cleaning of centrate pumps, acid cleans
- Intensive fortnightly activities

Work Order Type	(Multiple Items)			
Row Labels	J Sum of Actual Material Costs	Sum of Actual Other Costs	Sum of Actual Resource Cost	Sum of Actual Total Costs
B ST018-PU0450-101 Centrifuge Filtrate Pump 1		Sum of Actual Other Costs 82,766	Sum of Actual Resource Cost 15,772	Sum of Actual Total Costs 107,329
ST18- Dewatering filtrate pumps	-	-	-	-
ST18 Cen 2 not pumping centrate	-	1.165	287	1,453
ST18 Cent filtrate pump 1 not pumping	-		-	-,
ST18 Cent Filtrate pumps blocked Peter V	285	6,254	1,613	8,152
ST18 Cent. filtrate pump 1 not pumping		1,199	259	1,458
ST18 Centrate pumps blocked centrifuge	-	3,108	450	3,558
ST18 Centrifuge Filtrate pump blocked	-	841	254	1,095
ST18 Centrifuge filtrate pumps fault.	-	1,518	283	1,801
ST18 centrifuge filtrate pumps faulting	-	35,072	3,190	38,262
ST18 centrifuge filtrate pumps tire coup	-	1,251	415	1,666
ST18 Centrifuge filtrate pumps tripping	3,233	1,339	345	4,916
ST18-FILTRATE PUMP	-,	2,257	528	2,785
ST18 Filtrate pump 1 coupling broken	-	313	216	529
ST18 filtrate pump 1 thermal overload	218	618	121	956
ST18 Filtrate pumps 1/2 blocked Phil D.	-	584	147	730
ST18 Filtrate pumps blocked Bob H.Called	-	646	732	1,377
ST18-Centrifuge filtrate pump	2,847	14,933	3,101	20,881
ST18Centrifuge Filtrate pump blocked	1,531	3,658	837	6,026
ST18-FILTRATE PUMP 1 NOT PUMPING		539	610	1,149
ST018-PU0450-102 Centrifuge Filtrate Pump 2	8,678	36,400	9,339	54,417
Centrate pumps blocked att Glen	-	635	154	788
Filtrate pump 2 refurb requested by Tom	-			-
ST018- filtrate pump #2 thermal overload	4,818	2,476	759	8,053
ST18 Centrifuge filtrate 2 not pumping	-	998	321	1,318
ST18 CENTRIFUGE FILTRATE PUMP #2	-	992	306	1,298
ST18 CENTRIFUGE FILTRATE PUMP #2 BLOCKED) <u>-</u>	998	321	1,318
ST18 centrifuge filtrate pump 2 blocked	2,931	7.154	1,319	11,405
ST18 centrifuge filtrate pump 2 siezed	502	2,833	596	3,930
ST18 filtrate pump 2 blockage	-	2,739	885	3,624
ST18 filtrate pump 2 cable requires atte		597	182	779
ST18 Filtrate pump 2 fault callout Gavin	427	10,061	2,750	13,238
ST18, Filtrate pumps require Acid Clean		643	199	842
ST18-centrifuge filtrate pump 2 loes s		4,064	881	4,946
ST18-filtrate pump 2 continually running	-	2,209	668	2,877
Grand Total	17,468	119,166	25,112	161,745

ANZBP National Biosolids Conference 2023 I © 2022 GHD. All rights reserved.

Struvite / MAP Formation

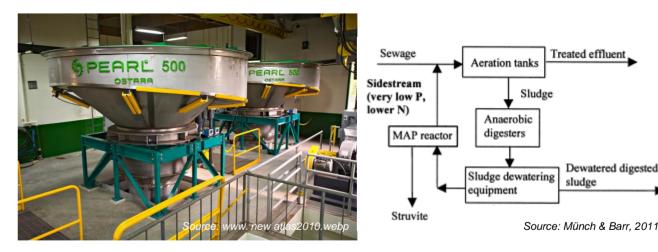
$MgNH_4PO_4.6H_2O$

- Precipitates whenever activities of Mg²⁺, NH₄+, PO₄³⁻ exceed solubility constant
- Depends on pH → Higher pH = greater precipitation potential
- Anaerobic digestion of BNR WAS releases high concentrations of NH₄⁺, PO₄³⁻, Mg²⁺
- Pressure drop in pumps, pump suction and pipe bends causes CO₂ stripping, raising pH

ANZBP National Biosolids Conference 2023 I © 2022 GHD. All rights reserved.

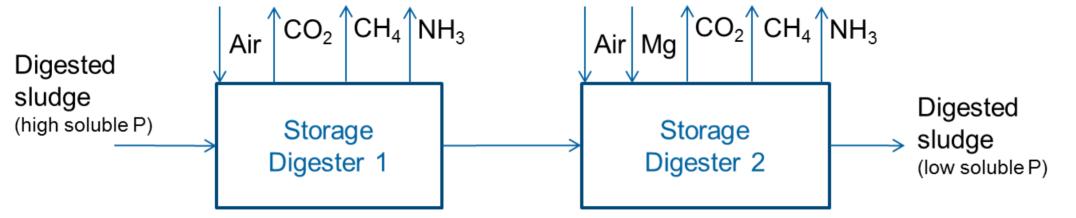
Phosphorus Recovery with Struvite Crystalisation

Why recover phosphorus?


- Growth limiting nutrient
- Increased demand and limited reserves
- Discharge to environment causes severe eutrophication and loss of resource

Struvite crystallisation processes

- Side-stream CSTR or fluidised bed reactor
 - CSTR: Phospaq, Anphos, NuReSys
 - FBR: Ostara/Pearl, Phosnix
- Sludge-stream
 - Airprex (CSTR with crystal separation / settling)
- Significant infrastructure & operational costs



7

In-Digester Struvite Recovery

- Series digested sludge flow
 - from Storage Digester 1 to 2
- Storage Digester 1: Air mixing & strip CO₂
 - Raise pH
 - Minimise MgCO₃ formation
- Storage Digester 2: MHL dosing & air mixing
 - Raise pH further
 - Crystalise struvite further
 - Reduce sludge phosphate concentration

- ✓ Low cost infrastructure / implementation solution
- Reduces phosphate to very low levels in digested sludge and throughout sludge stream
- ✓ Minimises struvite formation potential throughout
- Phosphorus retained in the biosolids product
- ✓ Phosphorus in Struvite is bio-available
- ✓ WWTP effluent P (& N) reduction
- Improved sludge dewaterability
- × Struvite / phosphorus is not separated from biosolids

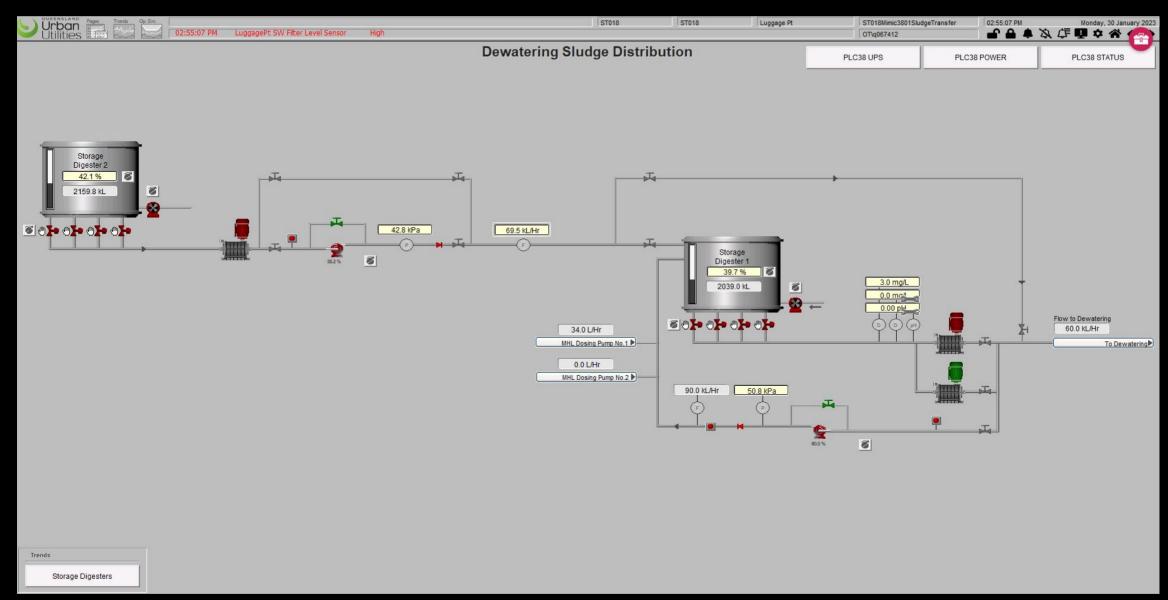
MHL Dosing Design Basis

- Low centrate Mg supports observations that significant struvite formed prior to centrifuges
- Problematic struvite still forming with Mg ~ 5 mg/L
- Struvite precipitation potential decreased by dropping soluble P concentration
- Target < 20 mg-P/L</p>
- Centrate data prior to MHL dosing:

Parameter	Units	Average
Magnesium	mg/L	5
Ammonia	mg N/L	930
Soluble Phosphorus	mg P/L	195
рН		7.9

ANZBP National Biosolids Conference 2023 I © 2022 GHD. All rights reserved.

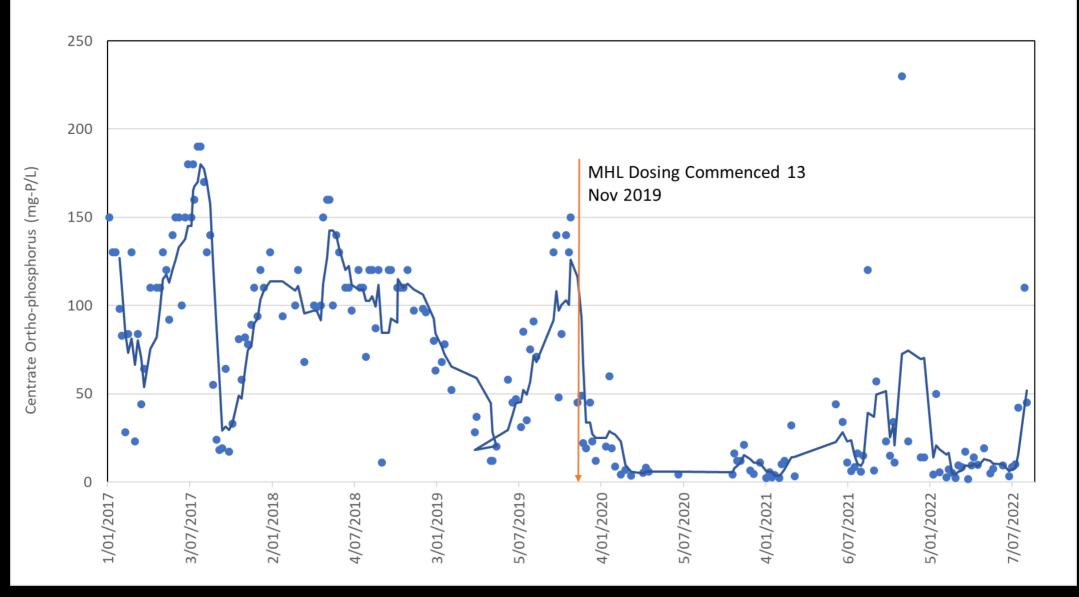
MHL Storage & Dosing


- Simple bulk storage tanks & dosing pumps
- No recirculation or tank mixing
- MHL supply makes a difference:
 - Current supply is very low maintenance
 - No blockages
 - Effective P removal
- MHL dosed to sludge recirculation line on Storage Digester 2

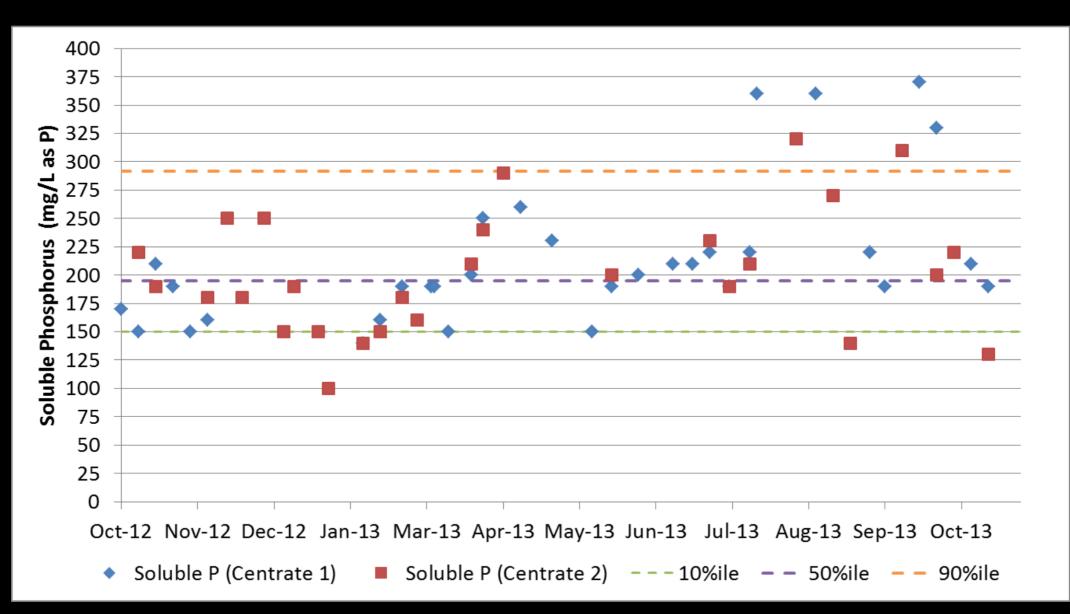
ANZBP National Biosolids Conference 2023 I © 2022 GHD. All rights reserved.

Digested Sludge MHL Dosing PFD

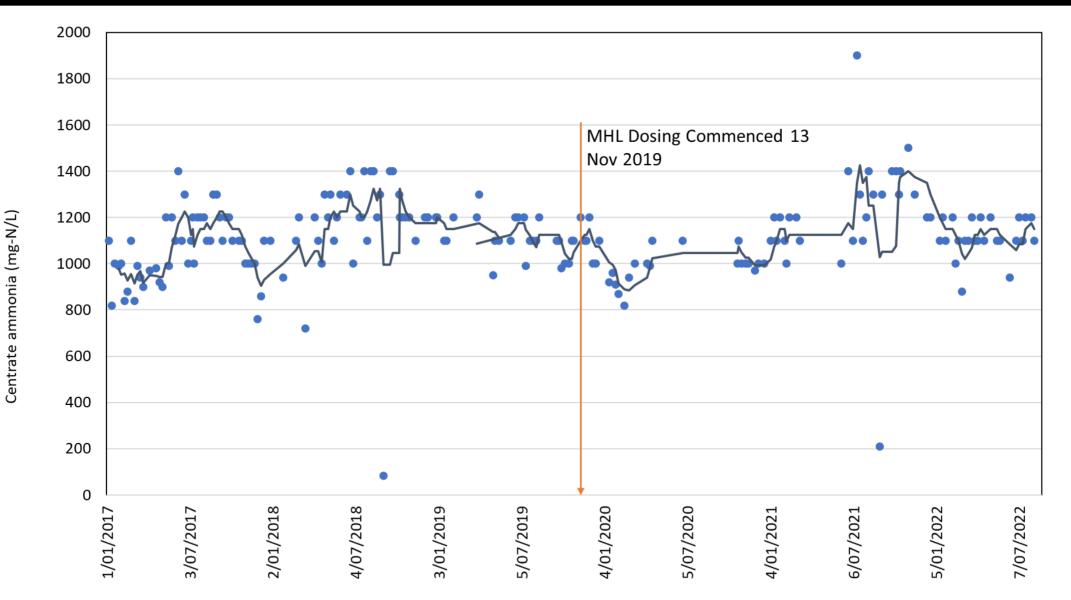
Implementation Results

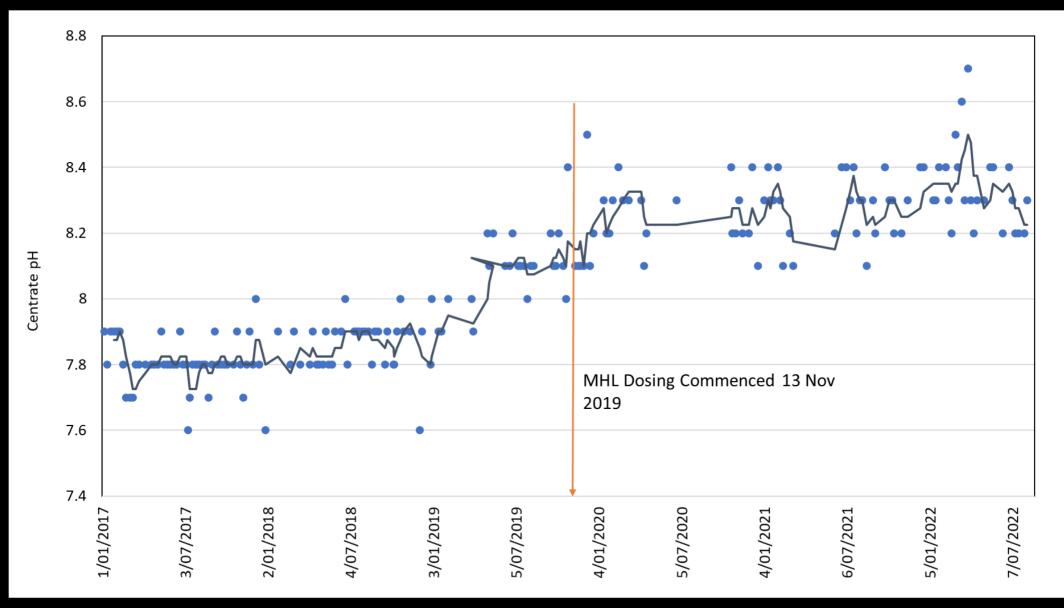


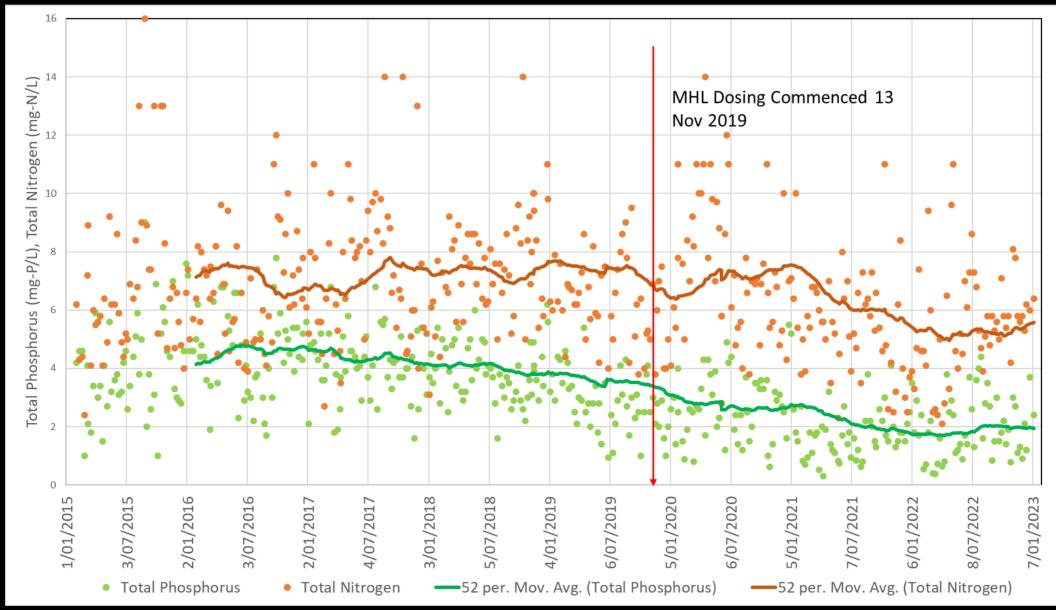
NO struvite related blockages or maintenance - pipelines or - pumps


Other measures that contributed:

- Removal of sharp bends in pipework
- Removed long suction pipes for pumps
- Centrate pumps changed to PD type

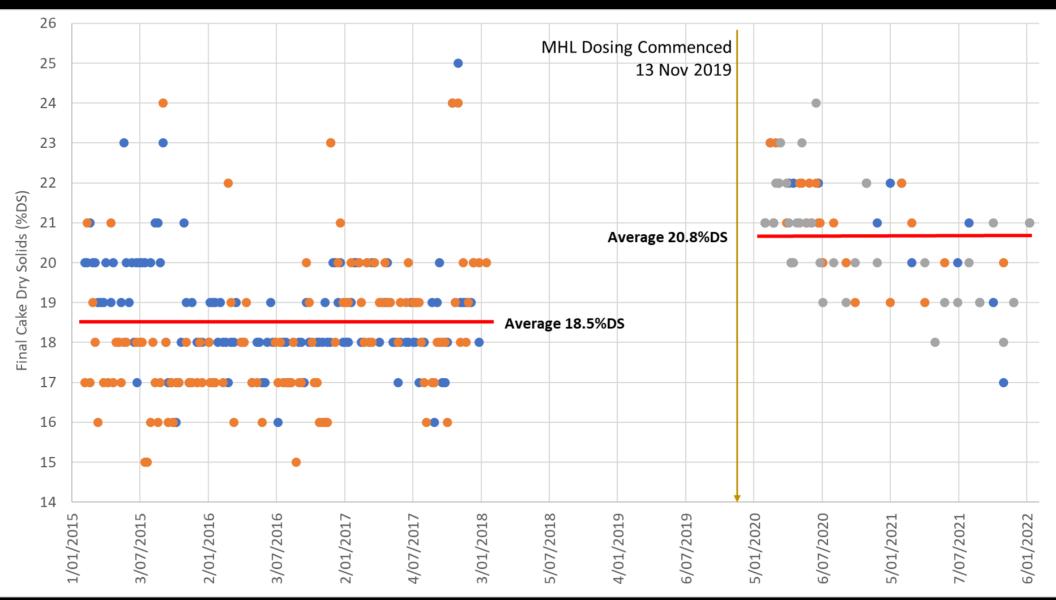

Centrate Soluble Phosphorus Reduction


Centrate Soluble Phosphorus Prior to MHL & Fe Dosing


Centrate Ammonia "Reduction"

Centrate pH Change

Luggage Pt WWTP Effluent Total P & N



Effluent Phosphorus Reduction

- Struvite/MHL removes about 170 250 kg-P/day
 - Equivalent to 1.3 2 mg-P/L in effluent
- Ferrous chloride dosing to primary digesters
 - Targeting H₂S reduction in biogas for Cogen
 - Maximum impact would be 15% of P reduction
- Limited impact on centrate nitrogen return
 - Anammox centrate removal efficient / cost effective

Luggage Pt WWTP Dewatered Cake Dry Solids

Operational Parameters

- MHL dose rate = 34 L/h
- Molar dosage (Mg:P) = 1.6
- Airflow rate = 1000 m³/h/digester
- Digester HRT (each) = 30 hours

UrbanUtilities

*** Thank You**

→ ghd.com